

Operating Instructions VLT[®] AQUA Drive FC 202

www.danfoss.com/drives

DRIVE

Danfoss

Contents

Operating Instructions

Contents

1 Introduction	4
1.1 Product Overview	4
1.1.1 Interior Views	4
1.1.2 Extended Options Cabinets	5
1.2 Purpose of the Manual	6
1.3 Additional Resources	6
1.4 Product Overview	6
1.5 Internal Controller Functions	7
1.6 Frame Sizes and Power Ratings	7
2 Safety	8
2.1 Safety	8
3 Installation	9
3.1 Planning the Installation Site	9
3.2 Pre-Installation Check List	9
3.3 Mechanical Installation	9
3.3.1 Cooling	9
3.3.2 Lifting	10
3.3.3 Wall Mounting - IP21 (NEMA 1) and IP54 (NEMA 12) Units	10
3.4 Electrical Installation	11
3.4.1 General Requirements	11
3.4.2 Grounding Requirements	14
3.4.2.1 Leakage Current (>3.5 mA)	14
3.4.2.2 Grounding IP20 Enclosures	15
3.4.2.3 Grounding IP21/54 Enclosures	15
3.4.3 Motor Connection	16
3.4.3.1 Terminal Locations: D1h-D4h	16
3.4.3.2 Terminal Locations: D5h-D8h	20
3.4.4 Motor Cable	30
3.4.5 Motor Rotation Check	30
3.4.6 AC Mains Connection	30
3.5 Control Wiring Connection	30
3.5.1 Access	31
3.5.2 Using Screened Control Cables	31
3.5.3 Grounding of Screened Control Cables	31
3.5.4 Control Terminal Types	32
3.5.5 Wiring to Control Terminals	33
3.5.6 Control Terminal Functions	33
3.6 Serial Communication	33

3.7 Optional Equipment	34
3.7.1 Load Share Terminals	34
3.7.2 Regeneration Terminals	34
3.7.3 Anti-condensation Heater	34
3.7.4 Brake Chopper	34
3.7.5 Mains Shield	34
3.7.6 Mains Disconnect	34
3.7.7 Contactor	35
3.7.8 Circuit Breaker	35
4 Start Up and Commissioning	36
4.1 Pre-start	36
4.2 Applying Power	37
4.3 Basic Operational Programming	37
4.4 Local-control Test	38
4.5 System Start Up	39
5 User Interface	40
5.1 Local Control Panel	40
5.1.1 LCP Layout	40
5.1.2 Setting LCP Display Values	41
5.1.3 Display Menu Keys	41
5.1.4 Navigation Keys	42
5.1.5 Operation Keys	42
5.2 Back Up and Copying Parameter Settings	42
5.2.1 Uploading Data to the LCP	43
5.2.2 Downloading Data from the LCP	43
5.3 Restoring Default Settings	43
5.3.1 Recommended Initialisation	43
5.3.2 Manual Initialisation	43
6 Programming	44
6.1 Introduction	44
6.2 Programming Example	44
6.3 Control Terminal Programming Examples	46
6.4 International/North American Default Parameter Settings	46
6.5 Parameter Menu Structure	
6.6 Remote Programming with MCT 10 Set-up Software	
7 Application Examples	53
7.1 Introduction	53
7.2 Application Examples	53

7.3 Connection Examples for Control of Motor with External Signal Provider	58
7.3.1 Start/Stop	58
7.3.2 Pulse Start/Stop	58
7.3.3 Speed Up/Down	58
7.3.4 Potentiometer Reference	59
8 Status Messages	60
8.1 Status Display	60
8.2 Status Message Definitions Table	60
9 Warnings and Alarms	63
9.1 System Monitoring	63
9.2 Warning and Alarm Types	63
9.2.1 Warnings	63
9.2.2 Alarm Trip	63
9.2.3 Alarm Trip-lock	63
9.3 Warning and Alarm Displays	63
9.4 Warning and Alarm Definitions	64
9.5 Fault Messages	65
10 Basic Troubleshooting	72
11 Specifications	75
11.1 Power-dependent Specifications	75
11.2 General Technical Data	78
11.3 Fuse Tables	82
11.3.1 Protection	82
11.3.2 Fuse Selection	82
11.3.3 Short Circuit Current Rating (SCCR)	83
11.3.4 Connection Tightening Torques	84
Index	85

Danfoss

1

Operating Instructions

1 Introduction

- 1.1 Product Overview
- 1.1.1 Interior Views

Illustration 1.2 Close-up View: LCP and Control Functions

1	LCP (Local Control Panel)	9	Relay 2 (04, 05, 06)
2	RS-485 serial bus connector	10	Lifting ring
3	Digital I/O and 24 V power supply	11	Mounting slot
4	Analog I/O connector	12	Cable clamp (PE)
5	USB connector	13	Earth (ground)
6	Serial bus terminal switch	14	Motor output terminals 96 (U), 97 (V), 98 (W)
7	Analog switches (A53), (A54)	15	Mains input terminals 91 (L1), 92 (L2), 93 (L3)
8	Relay 1 (01, 02, 03)	16	TB5 (IP21/54 only). Terminal block for anti-condensation heater

Table 1.1 Legend to Illustration 1.1 and Illustration 1.2

NOTICE

For location of TB6 (terminal block for contactor), see chapter 3.4.3.2 Terminal Locations: D5h-D8h.

1.1.2 Extended Options Cabinets

If a frequency converter is ordered with one of the following options, it is supplied with an options cabinet that makes it taller.

- Brake chopper
- Mains disconnect
- Contactor
- Mains disconnect with contactor
- Circuit breaker

Illustration 1.3 shows an example of a frequency converter with an options cabinet. *Table 1.2* lists the variants for the frequency converters that include input options.

Options unit	Extension cabinets	Possible options
designations		
D5h	D1h enclosure with	Brake, Disconnect
	short extension	
D6h	D1h enclosure with tall	Contactor, Contactor
	extension	with Disconnect,
		Circuit Breaker
D7h	D2h enclosure with	Brake, Disconnect
	short extension	
D8h	D2h enclosure with tall	Contactor, Contactor
	extension	with Disconnect,
		Circuit Breaker

Table 1.2 Overview of Extended Options

The D7h and D8h frequency converters (D2h plus options cabinet), include a 200 mm pedestal for floor mounting.

There is a safety latch on the front cover of the options cabinet. If the frequency converter is supplied with a mains disconnect or circuit breaker, the safety latch prevents the cabinet door from being opened while the frequency converter is energized. Before opening the door of the frequency converter, the disconnect or circuit breaker must be opened (to de-energize the frequency converter) and the cover of the options cabinet must be removed.

For frequency converters purchased with a disconnect, contactor or circuit breaker, the name plate label includes a type code for a replacement that does not include the option. If there is a problem with the frequency converter, it is replaced independent of the options.

Refer to *chapter 3.7 Optional Equipment* for more detailed descriptions of the input options and other options that may be added to the frequency converter.

Illustration 1.3 D7h Enclosure

30BC539.10

1

<u> Danfoss</u>

1.2 Purpose of the Manual

This manual provides detailed information for the installation and start-up of the frequency converter. *Chapter 3 Installation* provides requirements for mechanical and electrical installation, including:

- Input
- Motor
- Control wiring
- Serial communication wiring
- Control terminal functions

Chapter 4 Start Up and Commissioning provides detailed procedures for:

- Start-up
- Basic operational programming
- Functional testing

The remaining chapters provide supplementary details. These details include:

- User interface
- Detailed programming
- Application examples
- Start-up
- Troubleshooting
- Specifications

VLT[®] is a registered trademark.

1.3 Additional Resources

Other resources are available to understand advanced frequency converter functions and programming.

- The VLT[®] Programming Guide provides greater detail on working with parameters and many application examples.
- The VLT[®] Design Guide is intended to provide detailed capabilities and functionality to design motor control systems.
- Supplemental publications and manuals are available from Danfoss.
 See www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/VLT+Technical +Documentation.htm for listings.
- Optional equipment is available that may change some of the procedures described. Reference the instructions supplied with those options for specific requirements. Contact the local Danfoss supplier or visit the Danfoss website: www.danfoss.com/BusinessAreas/DrivesSolutions/

Documentations/VLT+Technical+Documentation.htm, for downloads or additional information.

1.4 Product Overview

A frequency converter is an electronic motor controller that converts DC into a variable AC waveform output. The frequency and voltage of the output are regulated to control the motor speed or torque. The frequency converter can vary the speed of the motor in response to system feedback, such as position sensors on a conveyor belt. The frequency converter can also regulate the motor by responding to remote commands from external controllers.

The frequency converter offers many control, monitoring and efficiency functions such as:

- Monitoring the system and motor status
- Issuing warnings or alarms for fault conditions
- Starting and stopping the motor
- Optimising energy efficiency

Operation and monitoring functions are available as status indications to an outside control system or serial communication network.

1.5 Internal Controller Functions

Illustration 1.4 is a block diagram of the frequency converter's internal components.

Illustration 1.4 Frequency Converter Block Diagram

Area	Title	Functions
1	Mains input	• 3-phase AC mains supply to the frequency converter
2	Rectifier	• The rectifier bridge converts the AC input to DC current to supply inverter power.
3	DC-bus	 Intermediate DC-bus circuit handles the DC current.
4	DC reactors	 Filter the intermediate DC circuit voltage. Prove line transient protection. Reduce RMS current. Raise the power factor reflected back to the line. Reduce harmonics on the AC input.

Area	Title	Functions
5	Capacitor bank	Stores the DC power.Provides ride-through protection for short power losses.
6	Inverter	• Converts the DC into a controlled PWM AC waveform for a controlled variable output to the motor.
7	Output to motor	Regulated 3-phase output power to the motor
8	Control circuitry	 Input power, internal processing, output, and motor current are monitored to provide efficient operation and control. User interface and external commands are monitored and performed. Status output and control can be provided.

1.6 Frame Sizes and Power Ratings

kW High Overload	75	90	110	132	160	200	250	315	315
kW Normal Overload	90	110	132	160	200	250	315	355	400
400 V		D3h	D3h	D3h	D4h	D4h	D4h		
500 V			D3h	D3h	D3h	D4h	D4h	D4h	
525 V	D3h	D3h	D3h	D4h	D4h	D4h	D4h		
690 V		D3h	D3h	D3h	D4h	D4h	D4h		D4h

Table 1.4 kW Rated Frequency Converters

HP High Overload	100	125	150	200	250	300	350	350
HP Normal Overload	125	150	200	250	300	350	400	450
460 V		D3h	D3h	D3h	D4h	D4h		D4h
575 V	D3h	D3h	D3h	D4h	D4h	D4h	D4h	

Table 1.5 HP Rated Frequency Converters

1

Jantoss

2 Safety

2.1 Safety

HIGH VOLTAGE

Frequency converters contain high voltage when connected to AC mains input power. Qualified personnel only should perform installation, start up, and maintenance. Failure to perform installation, start up, and maintenance by qualified personnel could result in death or serious injury.

UNINTENDED START

When the frequency converter is connected to AC mains, the motor may start at any time. The frequency converter, motor, and any driven equipment must be in operational readiness. Failure to be in operational readiness when the frequency converter is connected to AC mains could result in death, serious injury, equipment, or property damage.

DISCHARGE TIME

Frequency converters contain DC-link capacitors that can remain charged even when the frequency converter is not powered. To avoid electrical hazards, disconnect AC mains, any permanent magnet type motors, and any remote DC-link power supplies, including battery backups, UPS, and DC-link connections to other frequency converters. Wait for the capacitors to fully discharge before performing any service or repair work. The amount of wait time is listed in the *Discharge Time* table. Failure to wait the specified time after power has been removed before doing service or repair could result in death or serious injury.

Voltage [V]	Power range [kW]	Minimum waiting time
		(minutes)
3x400	90-250	20
3x400	110-315	20
3x500	110-315	20
3x500	132-355	20
3x525	75-250	20
3x525	90-315	20
3x690	90-250	20
3x690	110-315	20

Table 2.1 Discharge Time

Table 2.2 Approvals

The frequency converter complies with UL508C thermal memory retention requirements. For more information, refer to the section *Motor Thermal Protection* in the product specific Design Guide.

NOTICE

Imposed limitations on the output frequency (due to export control regulations):

From software version 6.72 onwards, the output frequency of the frequency converter is limited to 590 Hz. Software versions 6x.xx also limit the maximum output frequency to 590 Hz, but these versions cannot be flashed, that is, neither downgraded nor upgraded.

Danfoss

3 Installation

3.1 Planning the Installation Site

NOTICE

Before performing the installation it is important to plan the installation of the frequency converter. Neglecting this may result in extra work during and after installation.

Select the best possible operation site by considering the following (see details on the following pages and the respective Design Guides):

- Ambient operating temperature
- Installation method
- How to cool the unit
- Position of the frequency converter
- Cable routing
- Ensure the power source supplies the correct voltage and necessary current
- Ensure that the motor current rating is within the maximum current from the frequency converter
- If the frequency converter is without built-in fuses, ensure that the external fuses are rated correctly

Voltage [V]	Altitude restrictions
380-500	At altitudes above 3,000 m, contact Danfoss
	regarding PELV
525-690	At altitudes above 2,000 m, contact Danfoss
	regarding PELV

Table 3.1 Installation in High Altitudes

3.2 Pre-Installation Check List

- Before unpacking the frequency converter, ensure that the packaging is intact. If any damage has occurred, immediately contact the shipping company to claim the damage.
- Unpack the frequency converter as close as possible to the final installation site.
- Ensure the model number number on the nameplate corresponds to the model number on the order.
- Ensure that each of the following are rated for the same voltage:
 - Mains (power)
 - Frequency converter
 - Motor

- Ensure that the frequency converter output current rating is equal to or greater than the motor full load current for peak motor performance.
 - Motor size and frequency converter power must match for proper overload protection.
 - If frequency converter rating is less than motor, full motor output cannot be achieved.

3.3 Mechanical Installation

3.3.1 Cooling

- Top and bottom clearance for air cooling must be provided. Generally, 225 mm (9 in) is required.
- Improper mounting can result in over heating and reduced performance
- Derating for temperatures starting between 45 °C (113 °F) and 50 °C (122 °F) and elevation 1,000 m (3,300 ft) above sea level must be considered. See VLT[®] AQUA Drive FC 202 Design Guide for detailed information.

The high-power frequency converters utilise a backchannel cooling concept that removes heatsink cooling air, which carries approximately 90% of the heat out of the back channel of the frequency converters. The backchannel air can be redirected from the panel or room using one of the kits below.

Duct cooling

A back-channel cooling kit is available to direct the heat sink cooling air out of the panel when an IP20/chassis frequency converters is installed in a Rittal enclosure. Use of this kit reduces the heat in the panel and smaller door fans can be specified on the enclosure.

Cooling out the back (top and bottom covers)

The back-channel cooling air can be ventilated out of the room so that the heat from the back channel is not dissipated into the control room.

Danfoss

NOTICE

A door fan(s) is required on the enclosure to remove the heat not contained in the backchannel of the frequency converters and any additional losses generated by other components inside the enclosure. The total required air flow must be calculated so that the appropriate fans can be selected.

Airflow

The necessary airflow over the heat sink must be secured. The flow rate is shown in *Table 3.2*.

NOTICE

The fan runs for the following reasons:

- AMA
- DC Hold
- Pre-Mag
- DC Brake
- 60% of nominal current is exceeded
- Specific heat sink temperature exceeded (power size dependent)
- Specific power card ambient temperature exceeded (power size dependent)
- Specific control card ambient temperature exceeded

Frame	Door fan/top fan	Heat sink fan
D1h/D3h	102 m ³ /hr (60 CFM)	420 m ³ /hr (250 CFM)
D2h/D4h	204 m ³ /hr (120 CFM)	840 m ³ /hr (500 CFM)

Table 3.2 Airflow

3.3.2 Lifting

Always lift the frequency converter using the dedicated lifting eyes. Use a bar to avoid bending the lifting holes.

Illustration 3.1 Recommended Lifting Method

AWARNING

RISK OF INJURY OR DEATH

The lifting bar must be able to handle the weight of the frequency converter to ensure that it will not break during lifting.

- See for the weight of the different enclosure types.
- Maximum diameter for bar is 2.5 cm (1 inch).
- The angle from the top of the frequency converter to the lifting cable should be 60° or greater.

Failure to follow recommendations could result in death or serious injury.

3.3.3 Wall Mounting - IP21 (NEMA 1) and IP54 (NEMA 12) Units

Consider the following before selecting the final installation site:

- Free space for cooling
- Access to open the door
- Cable entry from the bottom

3.4 Electrical Installation

3.4.1 General Requirements

This section contains detailed instructions for wiring the frequency converter. The following tasks are described:

- Wiring the motor to the frequency converter output terminals
- Wiring the AC mains to the frequency converter input terminals
- Connecting control and serial communication
 wiring
- After power has been applied, checking input and motor power; programming control terminals for their intended functions

EQUIPMENT HAZARD!

Rotating shafts and electrical equipment can be hazardous. All electrical work must conform to national and local electrical codes. It is strongly recommended that installation, start up, and maintenance be performed only by trained and qualified personnel. Failure to follow these guidelines could result in death or serious injury.

WIRING ISOLATION!

Run input power, motor wiring and control wiring in three separate metallic conduits or use separated shielded cable for high frequency noise isolation. Failure to isolate power, motor and control wiring could result in less than optimum frequency converter and associated equipment performance. Danfoss

A=Analog, D=Digital

*Terminal 37 (optional) is used for Safe Torque Off. For Safe Torque Off installation instructions, refer to the Safe Torque Off Operating Instructions for Danfoss VLT[®] Frequency Converters.

**Do not connect cable screen.

For safety, comply with the following requirements

- Electronic controls equipment is connected to hazardous mains voltage. Extreme care should be taken to protect against electrical hazards when applying power to the unit.
- Run motor cables from multiple frequency converters separately. Induced voltage from output motor cables run together can charge equipment capacitors even with the equipment turned off and locked out.
- Field wiring terminals are not intended to receive a conductor one size larger.

Overload and Equipment Protection

- An electronically activated function within the frequency converter provides overload protection for the motor. The overload calculates the level of increase to activate timing for the trip (controller output stop) function. The higher the current draw, the quicker the trip response. The overload provides Class 20 motor protection. See *chapter 9 Warnings and Alarms* for details on the trip function.
- Because the motor wiring carries high frequency current, it is important that wiring for mains, motor power, and control are run separately. Use metallic conduit or separated shielded wire. See *Illustration 3.3.* Failure to isolate power, motor, and control wiring could result in less than optimum equipment performance.
- All frequency converters must be provided with short-circuit and over-current protection. Input fusing is required to provide this protection, see *Illustration 3.4.* If not factory supplied, fuses must be provided by the installer as part of installation. See maximum fuse ratings in *chapter 11.3.1 Protection.*

Danfoss

Item	Description
#	
1	Fuses
2	Ground

Wire type and ratings

- All wiring must comply with local and national regulations regarding cross-section and ambient temperature requirements.
- Danfoss recommends that all power connections be made with a minimum 75 °C rated copper wire.

3.4.2 Grounding Requirements

GROUNDING HAZARD!

For operator safety, it is important to ground the frequency converter properly in accordance with national and local electrical codes as well as instructions contained within this document. Do not use conduit connected to the frequency converter as a replacement for proper grounding. Ground currents are higher than 3.5 mA. Failure to ground the frequency converter properly could result in death or serious injury.

NOTICE

It is the responsibility of the user or certified electrical installer to ensure correct grounding of the equipment in accordance with national and local electrical codes and standards.

- Follow all local and national electrical codes to ground electrical equipment properly
- Proper protective earthing for equipment with ground currents higher than 3.5 mA must be

established, see *chapter 3.4.2.1 Leakage Current* (>3.5 mA)

- A dedicated ground wire is required for input power, motor power and control wiring
- Use the clamps provided with the equipment for proper ground connections
- Do not ground one frequency converter to another in a "daisy chain" fashion
- Keep the ground wire connections as short as possible
- Using high-strand wire to reduce electrical noise is recommended
- Follow motor manufacturer wiring requirements
- 3.4.2.1 Leakage Current (>3.5 mA)

Follow national and local codes regarding protective earthing of equipment with a leakage current >3.5 mA. Frequency converter technology implies high frequency switching at high power. This will generate a leakage current in the earth connection. A fault current in the frequency converter at the output power terminals might contain a DC component, which can charge the filter capacitors and cause a transient earth current. The earth leakage current depends on various system configurations including RFI filtering, screened motor cables, and frequency converter power.

EN/IEC61800-5-1 (Power Drive System Product Standard) requires special care if the leakage current exceeds 3.5 mA. Earthing (grounding) must be reinforced in one of the following ways:

- Earth (ground) wire of at least 10 mm²
- Two separate earth (ground) wires both complying with the dimensioning rules

See EN 60364-5-54 § 543.7 for further information.

3.4.2.2 Grounding IP20 Enclosures

The frequency converter can be grounded using conduit or shielded cable. For grounding of the power connections, use the dedicated grounding points as shown in *Illustration 3.5.*

Illustration 3.5 Grounding Points for IP20 (Chassis) Enclosures

3.4.2.3 Grounding IP21/54 Enclosures

The frequency converter can be grounded using conduit or shielded cable. For grounding of the power connections, use the dedicated grounding points as shown in *Illustration 3.6.*

Illustration 3.6 Grounding for IP21/54 Enclosures.

3.4.3 Motor Connection

INDUCED VOLTAGE!

Run output motor cables from multiple frequency converters separately. Induced voltage from output motor cables run together can charge equipment capacitors even with the equipment turned off and locked out. Failure to run output motor cables separately could result in death or serious injury.

• For maximum cable sizes, see

3.4.3.1 Terminal Locations: D1h-D4h

• Comply with local and national electrical codes for cable sizes

• Gland plates are provided at the base of IP21/54 and higher (NEMA1/12) units

- Do not install power factor correction capacitors between the frequency converter and the motor
- Do not wire a starting or pole-changing device between the frequency converter and the motor
- Connect the 3-phase motor wiring to terminals 96 (U), 97 (V), and 98 (W)
- Earth (ground) the cable in accordance with the instructions provided
- Torque terminals in accordance with the information provided in *chapter 11.3.4 Connection Tightening Torques*
- Follow motor manufacturer wiring requirements

Illustration 3.7 Terminal Locations D1h

Installation

Illustration 3.8 Terminal Locations D3h

1	Front view
2	Side view

Illustration 3.9 Loadshare and Regeneration Terminals, D3h

3

<u>Danfvšš</u>

<u>Danfvšš</u>

Illustration 3.10 Terminal Locations D2h

Illustration 3.11 Terminal Locations D4h

Illustration 3.12 Load Share and Regeneration Terminals, D4h

Operating Instructions

3.4.3.2 Terminal Locations: D5h-D8h

4 Earth/Ground Terminals

Illustration 3.13 Terminal Locations, D5h with Disconnect Option

3

1	Mains Terminals
2	Brake Terminals
3	Motor Terminals
4	Earth/Ground Terminals

Illustration 3.14 Terminal Locations, D5h with Brake Option

1	Mains Terminals
2	TB6 Terminal block for contactor
3	Brake Terminals
4	Motor Terminals
5	Earth/Ground Terminals

Illustration 3.15 Terminal Locations, D6h with Contactor Option

Danfoss

Installation **Operating Instructions** A A-A 盿 O в° ĨÞ 6 I 6

Brake Terminals
TB6 Terminal block for contactor
Motor Terminals
Earth/Ground Terminals
Mains Terminals

Illustration 3.16 Terminal Locations, D6h with Contactor and Disconnect Options

130BC538.12

Danfoss

3

1	Mains Terminals
2	Brake Terminals
3	Motor Terminals
4	Earth/Ground Terminals

Illustration 3.17 Terminal Locations, D6h with Circuit Breaker Option

Danfoss Installation **Operating Instructions** 130BC542.11 B-B A-A 2 ů Ø ٩þ 0 φ 0

1	Mains Terminals
2	Motor Terminals
3	Earth/Ground Terminals
4	Brake Terminals

illustration 3.18 Terminal Locations, D/n with Disconnect Option	Illustration 3.18 Terminal Locations, D7h with Disc	onnect Option
--	---	---------------

A-A

[0]	
1	Mains Terminals
2	Brake Terminals
3	Motor Terminals
4	Earth/Ground Terminals

0 [0]

Illustration 3.19 Terminal Locations, D7h with Brake Option

3

Danfoss

Danfoss

1 TB6 Terminal block for contactor	4	Brake Terminals
2 Motor Terminals	5	Mains Terminals
3 Earth/Ground Terminals		

Illustration 3.20 Terminal Locations, D8h with Contactor Option

Installation

Operating Instructions

1	TB6 Terminal block for contactor	4	Motor Terminals
2	PMains Terminals	5	Earth/Ground Terminals
3	Brake Terminals		

Illustration 3.21 Terminal Locations, D8h with Contactor and Disconnect Options

Operating Instructions

1 Mains Terminals	3	Motor Terminals
2 Brake Terminals	4	Earth/Ground Terminals

Illustration 3.22 Terminal Locations, D8h with Circuit Breaker Option

Installation

() 224.5 [9]

(J) 84.5 [3]

Danfoss

3

Connect the motor to terminals U/T1/96, V/T2/97, W/T3/98. Ground to terminal 99. All types of 3-phase asynchronous standard motors can be used with a frequency converter unit. The factory setting is for clockwise rotation with the frequency converter output connected as follows:

Terminal no.	Function
96, 97, 98,	Mains U/T1, V/T2, W/T3
99	Ground

Table 3.3 Terminals for Motor Cable Connection

3.4.5 Motor Rotation Check

The direction of rotation can be changed by switching 2 phases in the motor cable, or by changing the setting of *4-10 Motor Speed Direction*.

Table 3.4 Wiring for Changing Motor Direction

A motor rotation check can be performed using *1-28 Motor Rotation Check* and following the steps shown in the display.

3.4.6 AC Mains Connection

- All frequency converters may be used with an isolated input source as well as with ground reference power lines. When supplied from an isolated mains source (IT mains or floating delta) or TT/TN-S mains with a grounded leg (grounded delta), set 14-50 RFI Filter to [0] Off. When off, the internal RFI filter capacitors between the chassis and the intermediate circuit are isolated. Isolating the capacitors prevents damage to the intermediate circuit and reduces ground capacity currents in accordance with IEC 61800-3.
- Size wiring is based upon the input current of the frequency converter.

 Comply with local and national electrical codes for cable sizes.

Danfoss

- 1. Ground the cable in accordance with the instructions provided.
- Connect 3-phase AC input power wiring to terminals L1, L2, and L3 (see *Illustration 3.23*).

1	Mains connection	
2	Motor connection	

Illustration 3.23 Connecting to AC Mains

3.5 Control Wiring Connection

- Isolate control wiring from high power components in the frequency converter.
- If the frequency converter is connected to a thermistor for PELV isolation, optional thermistor control wiring must be reinforced/double insulated. A 24 V DC supply voltage is recommended.

3.5.1 Access

All terminals to the control cables are located underneath the LCP on the inside of the frequency converter. To access, open the door (IP21/54) or remove the front panel (IP20).

3.5.2 Using Screened Control Cables

Danfoss recommends braided screened/armoured cables to optimise EMC immunity of the control cables and the EMC emission from the motor cables.

The ability of a cable to reduce the incoming and outgoing radiation of electric noise depends on the transfer impedance (Z_T). The screen of a cable is normally designed to reduce the transfer of electric noise; however, a screen with a lower transfer impedance (Z_T) value is more effective than a screen with a higher transfer impedance (Z_T).

Transfer impedance (ZT) is rarely stated by cable manufacturers, but it is often possible to estimate transfer impedance (Z_T) by assessing the physical design of the cable.

Transfer impedance (Z_T) can be assessed on the basis of the following factors:

- The conductibility of the screen material. .
- The contact resistance between the individual ٠ screen conductors.
- The screen coverage, i.e. the physical area of the cable covered by the screen - often stated as a percentage value.
- Screen type, i.e. braided or twisted pattern.

a	Aluminium-clad with copper wire	
b	Twisted copper wire or armoured steel wire cable	
с	Single-layer braided copper wire with varying percentage	
	screen coverage (this is the typical Danfoss reference	
	cable).	
d	Double-layer braided copper wire	
e	Twin layer of braided copper wire with a magnetic,	
	screened/armoured intermediate layer	
f	Cable that runs in copper tube or steel tube	
g	Lead cable with 1.1 mm wall thickness	

Illustration 3.24 Cable Screening Performance

3.5.3 Grounding of Screened Control Cables

Correct screening

The preferred method in most cases is to secure control and serial communication cables with screening clamps provided at both ends to ensure best possible high frequency cable contact. If the ground potential between the frequency converter and the PLC is different, electric noise may occur that disturbs the entire system. Solve this problem by fitting an equalizing cable next to the control cable. Minimum cable cross section: 16 mm².

75ZA166.13

1	Min. 16 mm ²
2	Equalizing cable

Illustration 3.25 Correct Screening

50/60 Hz ground loops

With very long control cables, ground loops may occur. To eliminate ground loops, connect one end of the screen-to-ground with a 100 nF capacitor (keeping leads short).

Illustration 3.26 Avoiding Ground Loops

Avoid EMC noise on serial communication

This terminal is connected to ground via an internal RC link. Use twisted-pair cables to reduce interference between conductors. The recommended method is shown below:

1	Min. 16 mm ²
2	Equalizing cable
-	

Illustration 3.27 Avoiding EMC Noise

Alternatively, the connection to terminal 61 can be omitted:

3.5.4 Control Terminal Types

Terminal functions and default settings are summarised in *chapter 3.5.6 Control Terminal Functions*.

Illustration 3.29 Control Terminal Locations

- Connector 1 provides:
 - 4 programmable digital input terminals
 - 2 additional digital terminals
 - programmable as either input or output
 - 24 V DC terminal supply voltage
 - A common wire for optional customer supplied 24 V DC voltage
- **Connector 2** terminals (+)68 and (-)69 are for an RS-485 serial communications connection.
- Connector 3 provides
 - 2 analog inputs
 - 1 analog output
 - 10 V DC supply voltage
 - Common wires for the inputs and output
- **Connector 4** is a USB port available for use with the MCT 10 Set-up Software.
- Also provided are 2 Form C relay outputs which are located on the power card.

2

Danfoss

• Some options available for ordering with the unit may provide additional terminals. See the manual provided with the equipment option.

3.5.5 Wiring to Control Terminals

Terminal plugs can be removed for easy access.

Illustration 3.30 Removal of Control Terminals

3.5.6 Control Terminal Functions

Frequency converter functions are commanded by receiving control input signals.

- Each terminal must be programmed for the function it is supporting in the parameters associated with that terminal. See *chapter 6 Programming* and *chapter 7 Application Examples* for terminals and associated parameters.
- It is important to confirm that the control terminal is programmed for the correct function. See *chapter 6 Programming* for details on accessing parameters and programming.
- The default terminal programming is intended to initiate frequency converter functioning in a typical operational mode.

3.5.6.1 Terminal 53 and 54 Switches

- Analog input terminals 53 and 54 can select either voltage (0 to 10 V) or current (0/4-20 mA) input signals.
- Remove power to the frequency converter before changing switch positions.
- Set switches A53 and A54 to select the signal type. U selects voltage, I selects current.
- The switches are accessible when the LCP has been removed (see *Illustration 3.31*).

NOTICE

Some option cards available for the unit may cover these switches and must be removed to change switch settings. Always remove power to the unit before removing option cards. Observe the discharge time in *Table 2.1*.

- Terminal 53 default is for a speed reference signal in open loop, which is set in *16-61 Terminal 53 Switch Setting*
- Terminal 54 default is for a feedback signal in closed loop, which is set in *16-63 Terminal 54 Switch Setting*

Illustration 3.31 Location of Terminals 53 and 54 Switches and Bus Termination Switch

STO is an option. To run STO, additional wiring for the frequency converter is required. Refer to VLT[®] Frequency Converters Safe Torque Off Operating Instructions for further information.

3.6 Serial Communication

RS-485 is a 2-wire bus interface compatible with multi-drop network topology, i.e. nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to 1 network segment. Repeaters divide network segments. Each repeater functions as a node within the segment it is installed in. Each node connected within a given network must have a unique node address across all segments.

- Terminate each segment at both ends, using either the termination switch (S801) of the frequency converter or a biased termination resistor network.
- Always use screened twisted pair (STP) cable for bus cabling.
- Always follow good common installation practice.

Low-impedance ground connection of the screen at every node is important, including at high frequencies.

- Connect a large surface of the screen to ground, for example with a cable clamp or a conductive cable gland. It may be necessary to apply potential-equalizing cables to maintain the same ground potential throughout the network. Particularly in installations with long cables.
- To prevent impedance mismatch, always use the same type of cable throughout the entire network.
- When connecting a motor to the frequency converter, always use screened motor cable.

Cable	Screened twisted pair (STP)
Impedance	120 Ω
Max. cable length [m]	1200 (including drop lines)
	500 station-to-station

Table 3.5 Cable Information

3.7 Optional Equipment

3.7.1 Load Share Terminals

Load share terminals enable the connection of the DC circuits of several frequency converters. Load share terminals are available in IP20 frequency converters and extend out the top of the frequency converter. A terminal cover, supplied with the frequency converter, must be installed to maintain the IP20 rating of the enclosure. *Illustration 3.32* shows both the covered and uncovered terminals.

Illustration 3.32 Load Share or Regeneration Terminal with Cover (L) and without Cover (R)

3.7.2 Regeneration Terminals

Regen (regeneration) terminals can be supplied for applications that have a regenerative load. A regenerative unit, supplied by a third party, connects to the regen terminals so that power can be regenerated back onto the mains, resulting in energy savings. Regen terminals are available in IP20 frequency converters and extend out the top of the frequency converter. A terminal cover, supplied with the frequency converter, must be installed to maintain the IP20 rating of the enclosure. *Illustration 3.32* shows both the covered and uncovered terminals.

3.7.3 Anti-condensation Heater

An anti-condensation heater can be installed inside the frequency converter to prevent condensation from forming inside the enclosure when the unit is turned off. The heater is controlled by customer-supplied 230 V AC. For best results, operate the heater only when the unit is not running and turn the heater off when the unit is running.

3.7.4 Brake Chopper

A brake chopper can be supplied for applications that have a regenerative load. The brake chopper connects to a brake resistor, which consumes the braking energy, preventing an overvoltage fault on the DC bus. The braking chopper is automatically activated when the DC bus voltage exceeds a specified level, depending on the nominal voltage of the frequency converter.

3.7.5 Mains Shield

The mains shield is a Lexan cover installed inside the enclosure to provide protection according to VBG-4 accident-prevention requirements.

3.7.6 Mains Disconnect

The disconnect option is available in both varieties of option cabinets. The position of the disconnect changes based on the size of the options cabinet and whether or not other options are present. *Table 3.6* provides more detail about which disconnects are used.

Voltage [V] Frequency converter		Disconnect manufacturer
	model	and type
380–500 V	N110T5-N160T4	ABB OT400U03
	N200T5-N315T4	ABB OT600U03
535 (00	N75KT7-N160T7	ABB OT400U03
525–690	N200T7-N400T7	ABB OT600U03

Table 3.6 Mains Disconnect Types
3.7.7 Contactor

AC 50/60 Hz signal.

IEC Voltage Frequency Contactor [V] converter manufacturer and utilization model type category N110T5-GE CK95BE311N AC-3 N160T4 380-500 N200T5-GE CK11CE311N AC-3 N250T4 N315T4 GE CK11CE311N AC-1 N75KT7-GE CK95BE311N AC-3 N160T7 525-690 N200T7-GE CK11CE311N AC-3 N400T7

The contactor is powered by a customer-supplied 230 V

Table 3.7 Contactor Types

NOTICE

In applications requiring UL listing, when the frequency converter is supplied with a contactor, the customer must provide external fusing to maintain the UL rating of the frequency converter and a short circuit current rating of 100,000 A. See *chapter 11.3 Fuse Tables* for fuse recommendations.

3.7.8 Circuit Breaker

Table 3.8 provides details on the type of circuit breaker provided as an option with the various units and power ranges.

Voltage [V]	Frequency	Circuit breaker manufacturer
	converter model	and type
	N110T5-N132T5	ABB T5L400TW
	N160T5	ABB T5LQ400TW
380-500	N200T5	ABB T6L600TW
	N250T5	ABB T6LQ600TW
	N315T5	ABB T6LQ800TW
	N75KT7-N160T7	ABB T5L400TW
525–690	N200T7-N315T7	ABB T6L600TW
	N400T7	ABB T6LQ600TW

Table 3.8 Circuit Breaker Types

Danfoss

4 Start Up and Commissioning

4.1 Pre-start

Before applying power to the unit, inspect the entire installation as detailed in *Table 4.1*. Check mark those items when completed.

Inspect for	Description	
Auxiliary equipment	• Look for auxiliary equipment, switches, disconnects, or input fuses/circuit breakers on the input power side of the frequency converter or output side to the motor. Ensure that they are ready for full speed operation.	
	• Check function and installation of any sensors used for feedback to the frequency converter.	
	Remove power factor correction caps on motors, if present.	
Cable routing	Use separate metallic conduits for each of the following:	
	- Input power	
	- Motor wiring	
	- Control wiring	
Control wiring	Check for broken or damaged wires and loose connections.	
	• Check that control wiring is isolated from power and motor wiring for noise immunity.	
	Check the voltage source of the signals, if necessary.	
	• Use shielded or twisted pair cable. Ensure that the shield is terminated correctly.	
Cooling clearance • Measure that top and bottom clearance is adequate to ensure proper air flow for cooling.		
EMC considerations	Check for proper installation regarding electromagnetic compatibility.	
Environmental consider-	• See equipment label for the maximum ambient operating temperature limits.	
ations	Humidity levels must be 5–95%, non-condensing.	
Fusing and circuit	Check for proper fusing or circuit breakers.	
breakers	• Check that all fuses are inserted firmly and in operational condition and that all circuit breakers are in the open position.	
Grounding	• The unit requires a ground wire from its chassis to the building ground.	
	• Check for good ground connections that are tight and free of oxidation.	
	• Grounding to conduit or mounting the back panel to a metal surface is not sufficient.	
Input and output power	Check for loose connections.	
wiring	• Check that motor and mains are in separate conduit or separated screened cables.	
Panel interior	Inspect that the unit interior is free of debris and corrosion.	
Switches	• Ensure that all switch and disconnect settings are in the proper positions.	
Vibration	• Check that the unit is mounted solidly or that shock mounts are used, as necessary.	
	Check for an unusual amount of vibration.	

Table 4.1 Start-up Checklist

Operating Instructions

4.2 Applying Power

HIGH VOLTAGE!

Frequency converters contain high voltage when connected to the energised DC bus. Only qualified personnel should install, start up and maintain the freqeuncy converters. Failure to let qualified personnel install, start up and maintain the frequency converters could result in death or serious injury.

AWARNING

UNINTENDED START!

When the frequency converter is connected to the energised DC bus, the motor may start at any time. The frequency converter, motor, and any driven equipment must be in operational readiness. Failure to be in operational readiness when the frequency converter is connected to the energised DC bus could result in death, serious injury, equipment, or property damage.

- 1. Confirm input voltage is balanced within 3%. If not, correct input voltage imbalance before proceeding. Repeat procedure after voltage correction.
- 2. Ensure optional equipment wiring, if present, matches installation application.
- 3. Ensure that all operator devices are in the OFF position. Panel doors closed, or a cover mounted.
- Apply power to the unit. DO NOT start the frequency converter now. For units with a disconnect switch, turn to the ON position to apply power to the frequency converter.

NOTICE

If the status line in the LCP reads AUTO REMOTE COAST, it indicates that the unit is ready to operate, but is missing an input signal on terminal 27.

4.3 Basic Operational Programming

Frequency converters require basic operational programming before running for best performance. Basic operational programming requires entering motor-nameplate data for the motor being operated and the minimum and maximum motor speeds. Parameter settings recommended are intended for start up and checkout purposes. Application settings may vary. See *chapter 5.1 Local Control Panel* for detailed instructions on entering data through the LCP.

Enter data with power ON, but before operating the frequency converter. There are 2 ways of programming the frequency converter: either by using the Smart Application

Set-up (SAS) or by using the procedure described further down. The SAS is a quick wizard for setting up the most commonly used applications. At the first power-up and after a reset the SAS appears on the LCP. Follow the instructions that appear on the successive screens for setting-up the applications listed. SAS can also be found under the Quick Menu. [Info] is used throughout the Smart Set-up to see help information for various selections, settings and messages.

NOTICE

The start conditions are ignored while in the wizard.

NOTICE

If no action is taken after first power-up or reset, the SAS screen will automatically disappear after 10 minutes.

When not using the SAS, enter data in accordance with the following procedure.

- 1. Press [Main Menu] twice on the LCP.
- 2. Press the navigation keys to scroll to parameter group *0-** Operation/Display*.
- 3. Press [OK].

Illustration 4.1 0-** Operation/Display

4. Press the navigation keys to scroll to parameter group *0-0* Basic Settings* and press [OK].

Illustration 4.2 0-0* Basic Settings

 Press the navigation keys to scroll to 0-03 Regional Settings and press [OK]. 30BP088.10

0.0%	0.00A	1(1
Basic Settings		0-0*
0-03 Regional S	Settings	Δ
[0] Internationa	al	V

Illustration 4.3 0-03 Regional Settings

- Press the navigation keys to select *International* or *North America* as appropriate and press [OK]. (This changes the default settings for a number of basic parameters. See *chapter 6.5 Parameter Menu Structure* for a complete list.)
- 7. Press [Quick Menu] on the LCP.
- 8. Press the navigation keys to scroll to parameter group *Q2 Quick Setup*.
- 9. Press [OK].

		\sim	0
13.7%	13.0A	1(1)	47.1
Quick Menus			13088847.10
Q1 My Persona	l Menu		13(
Q2 Quick Setup		<u>[</u>	
Q5 Changes Ma	ade		
Q6 Loggings		\bigtriangledown	

10. Select language and press [OK].

Illustration 4.5 Select Language

- 11. If a jumper wire is placed between control terminals 12 and 27 leave 5-12 Terminal 27 Digital Input at factory default. Otherwise select No Operation. For frequency converters with an optional bypass, no jumper wire is required.
- 12. 3-02 Minimum Reference
- 13. *3-03 Maximum Reference*
- 14. 3-41 Ramp 1 Ramp Up Time
- 15. 3-42 Ramp 1 Ramp Down Time
- 16. *3-13 Reference Site*. Linked to Hand/Auto* Local Remote.

4.4 Local-control Test

MOTOR START

Ensure that the motor, system and any attached equipment are ready for start. It is the responsibility of the user to ensure safe operation under any condition. Failure to ensure that the motor, system, and any attached equipment is ready for start could result in personal injury or equipment damage.

NOTICE

The [Hand On] key provides a local start command to the frequency converter. The [Off] key provides the stop function.

When operating in local mode, $[\blacktriangle]$ and $[\blacktriangledown]$ increase and decrease the speed output of the frequency converter. [\blacktriangleleft] and $[\triangleright]$ move the display cursor in the numeric display.

- 1. Press [Hand On].
- Accelerate the frequency converter by pressing
 [^A] to full speed. Moving the cursor left of the decimal point provides quicker input changes.
- 3. Note any acceleration problems.
- 4. Press [Off].
- 5. Note any deceleration problems.

If acceleration problems were encountered:

- If warnings or alarms occur, see chapter 9 Warnings and Alarms.
- Check that motor data is entered correctly.
- Increase the ramp-up time in 3-41 Ramp 1 Ramp Up Time.
- Increase the current limit in 4-18 Current Limit.
- Increase the torque limit in 4-16 Torque Limit Motor Mode.

If deceleration problems were encountered:

- If warnings or alarms occur, see chapter 9 Warnings and Alarms.
- Check that motor data is entered correctly.
- Increase the ramp-down time in 3-42 Ramp 1 Ramp Down Time.
- Enable overvoltage control in 2-17 Over-voltage Control.

See *chapter 5.1.1 Local Control Panel* for resetting the frequency converter after a trip.

NOTICE

Chapter 4.2 Applying Power and chapter 4.3 Basic Operational Programming conclude the procedures for applying power to the frequency converter, basic programming, set-up, and functional testing.

4.5 System Start Up

Complete user wiring and application programming before performing the procedure in this section. See *chapter 7 Application Examples* for application set-up information. The following procedure is recommended after application set-up by the user is completed.

ACAUTION

MOTOR START!

Ensure that the motor, system, and any attached equipment are ready for start. It is the responsibility of the user to ensure safe operation under any condition. Failure to ensure that the motor, system, and any attached equipment are ready for start could result in personal injury or equipment damage.

- 1. Press [Auto On].
- 2. Ensure that external control functions are properly wired to the frequency converter and all programming is completed.
- 3. Apply an external run command.
- 4. Adjust the speed reference throughout the speed range.
- 5. Remove the external run command.
- 6. Note any problem.

If warnings or alarms occur, see *chapter 9 Warnings and Alarms*.

Danfoss

Danfoss

130BC362.10

5 User Interface

5.1 Local Control Panel

The local control panel (LCP) is the combined display and keypad on the front of the unit. The LCP is the user interface to the frequency converter.

The LCP has several user functions.

- Start, stop, and control speed when in local control
- Display operational data, status, warnings and cautions
- Programming frequency converter functions
- Manually reset the frequency converter after a fault when auto-reset is inactive

An optional numeric LCP (NLCP) is also available. The NLCP operates in a manner similar to the LCP. See the *Programming Guide,* for details on use of the NLCP.

5.1.1 LCP Layout

The LCP is divided into 4 functional groups (see *Illustration 5.1*).

a	Display area.	
b	Display menu keys for changing the display to show	
	status options, programming, or error message	
	history.	
с	Navigation keys for programming functions, moving	
	the display cursor, and speed control in local	
	operation. The status indicator lights are also in this	
	group.	
d	Operational mode keys and reset.	

Illustration 5.1 LCP

5.1.2 Setting LCP Display Values

The display area is activated when the frequency converter receives power from mains voltage, a DC bus terminal, or an external 24 V DC supply.

The information displayed on the LCP can be customized for user application.

- Each display readout has a parameter associated with it
- Options are selected in the quick menu Q3-13 Display Settings
- Display 2 has an alternate larger display option
- The frequency converter status at the bottom line of the display is generated automatically and is not selectable

Illustration 5.2 Display Readouts

Illustration 5.3 Display Readouts

5.1.3 Display Menu Keys

Menu keys are used for menu access for parameter set-up, toggling through status display modes during normal operation, and viewing fault log data.

Key	Function
Status	 Shows operational information. In Auto mode, press to toggle between status readout displays. Press repeatedly to scroll through each status display.
	 Press [Status] plus [▲] or [▼] to adjust the display brightness.
	• The symbol in the upper right corner of the display shows the direction of motor rotation and which set-up is active. This is not programmable.
Quick Menu	 Allows access to programming parameters for initial set-up instructions and many detailed application instructions. Press to access <i>Q2 Quick Set-up</i> for sequenced instructions to program the basic frequency controller set-up. Follow the sequence of parameters as presented for the function set-up.
Main Menu	 Allows access to all programming parameters. Press twice to access top-level index. Press once to return to the last location accessed. Press to enter a parameter number for direct access to that parameter.
Alarm Log	 Displays a list of current warnings, the last 10 alarms, and the maintenance log. For details about the frequency converter before it entered the alarm mode, select the alarm number using the navigation keys and press [OK].

Table 5.1 Function Description Menu Keys

5.1.4 Navigation Keys

Navigation keys are used for programming functions and moving the display cursor. The navigation keys also provide speed control in local (hand) operation. There are also 3 frequency converter status indicator lights in this area.

Illustration 5.5 Navigation Keys

Кеу	Function	
Back	Reverts to the previous step or list in the menu	
	structure.	
Cancel Cancels the last change or command as long as		
	the display mode has not changed.	
Info	Press for a definition of the function being	
	displayed.	
Navigation	Press the 4 navigation keys to move between	
Keys	items in the menu.	
ОК	Press to access parameter groups or to enable a	
	choice.	

Table 5.2 Navigation Keys Functions

Light	Indicator	Function
Green	ON	The ON light activates when the
		frequency converter receives
		power from mains voltage, a DC
		bus terminal, or an external 24 V
		supply.
Yellow	WARN	When warning conditions are met,
		the yellow WARN light comes on
		and text appears in the display
		area identifying the problem.
Red	ALARM	A fault condition causes the red
		alarm light to flash and an alarm
		text is displayed.

Table 5.3 Indicator Lights Functions

5.1.5 Operation Keys

Operation keys are located at the bottom of the LCP.

Illustration 5.6 Operation Keys

Key	Function	
Hand On	 Starts the frequency converter in local control. Use the navigation keys to control frequency converter speed. An external stop signal by control input or serial communication overrides the local hand on. 	
Off	Stops the motor, but does not remove power to the frequency converter.	
Auto On	 Puts the system in remote operational mode. Responds to an external start command by control terminals or serial communication. Speed reference is from an external source. 	
Reset	Resets the frequency converter manually after a fault has been cleared.	

Table 5.4 Operation Keys Functions

5.2 Back Up and Copying Parameter Settings

Programming data is stored internally in the frequency converter.

- The data can be uploaded into the LCP memory as a storage back up.
- Once stored in the LCP, the data can be downloaded back into the frequency converter.
- Data can also be downloaded into other frequency converters by connecting the LCP into those units and downloading the stored settings. (This is a quick way to program multiple units with the same settings).
- Initialisation of the frequency converter to restore factory default settings does not change data stored in the LCP memory.

UNINTENDED START

When the frequency converter is connected to AC mains, or DC power supply, the motor may start at any time. Unintended start during programming, service or repair work can result in death, serious injury, or property damage. The motor can start by means of an external switch, a serial bus command, an input reference signal from the LCP, or after a cleared fault condition. To prevent unintended motor start:

- Disconnect the frequency converter from mains.
- Press [Off/Reset] on the LCP, before programming parameters.
- The frequency converter, motor, and any driven equipment must be fully wired and assembled when the frequency converter is connected to AC mains, or DC power supply.

5.2.1 Uploading Data to the LCP

- 1. Press [Off] to stop the motor before uploading or downloading data.
- 2. Go to *0-50 LCP Copy*.
- 3. Press [OK].
- 4. Select All to LCP.
- 5. Press [OK]. A progress bar shows the uploading process.
- 6. Press [Hand On] or [Auto On] to return to normal operation.

5.2.2 Downloading Data from the LCP

- 1. Press [Off] to stop the motor before uploading or downloading data.
- 2. Go to 0-50 LCP Copy.
- 3. Press [OK].
- 4. Select All from LCP.
- 5. Press [OK]. A progress bar shows the downloading process.
- 6. Press [Hand On] or [Auto On] to return to normal operation.

5.3 Restoring Default Settings

NOTICE

Initialisation restores the unit to factory default settings. Any programming, motor data, localisation, and monitoring records are lost. Uploading data to the LCP provides a back-up before initialisation. Restoring the frequency converter parameter settings back to default values is done by initialisation of the frequency converter. Initialisation can be carried out via *14-22 Operation Mode* or manually.

- Initialisation using 14-22 Operation Mode does not change frequency converter data such as operating hours, serial communication selections, personal menu settings, fault log, alarm log, and other monitoring functions.
- Using 14-22 Operation Mode is generally recommended.
- Manual initialisation erases all motor, programming, localisation, and monitoring data and restores factory default settings.

5.3.1 Recommended Initialisation

- 1. Press [Main Menu] twice to access parameters.
- 2. Scroll to 14-22 Operation Mode.
- 3. Press [OK].
- 4. Scroll to Initialisation.
- 5. Press [OK].
- 6. Remove power to the unit and wait for the display to turn off.
- 7. Apply power to the unit.

Default parameter settings are restored during start-up. This may take slightly longer than normal.

- 8. Alarm 80 is displayed.
- 9. Press [Reset] to return to operation mode.

5.3.2 Manual Initialisation

- 1. Remove power to the unit and wait for the display to turn off.
- 2. Press and hold [Status], [Main Menu], and [OK] at the same time and apply power to the unit.

Factory default parameter settings are restored during start-up. This may take slightly longer than normal.

Manual initialisation does not reset the following frequency converter information:

- 15-00 Operating hours
- 15-03 Power Up's
- 15-04 Over Temp's
- 15-05 Over Volt's

Danfoss

6 Programming

6.1 Introduction

The frequency converter is programmed for its application functions using parameters. Parameters are accessed by pressing either [Quick Menu] or [Main Menu] on the LCP. (See *chapter 5.1 Local Control Panel* for details on using the LCP function keys). Parameters may also be accessed via a PC using the MCT 10 Set-up Software (see *chapter 6.6.1 Remote Programming with MCT 10 Set-up Software*).

The Quick Menu is intended for initial start-up (Q2-** Quick Set-up) and detailed instructions for common frequency converter applications (Q3-** Function Set-up). Step-by-step instructions are provided. These instructions enable the user to walk through the parameters used for programming applications in their proper sequence. Data entered in a parameter can change the options available in the parameters following that entry. The Quick Menu presents easy guidelines for getting most systems up and running.

The Main Menu accesses all parameters and allows for advanced frequency converter applications.

6.2 Programming Example

Here is an example for programming the frequency converter for a common application in open loop using the quick menu.

- This procedure programs the frequency converter to receive a 0-10 V DC analog control signal on input terminal 53
- The frequency converter will respond by providing 20-50 Hz output to the motor proportional to the input signal (0-10 V DC=20-50 Hz)

This is a common pump or fan application.

Press [Quick Menu] and select the following parameters using the navigation keys to scroll to the titles and press [OK] after each action.

- 1. Q3 Function Setups
- 2. Parameter Data Set

Danfoss

Illustration 6.1 Q3 Function Setups

3. Q3-2 Open Loop Settings

Illustration 6.2 Q3-2 Open Loop Settings

4. Q3-21 Analog Reference

Illustration 6.3 Q3-21 Analog Reference

5. *3-02 Minimum Reference*. Set minimum internal frequency converter reference to 0 Hz. (This sets the minimum frequency converter speed at 0 Hz).

Illustration 6.4 3-02 Minimum Reference

Programming

6. *3-03 Maximum Reference*. Set maximum internal frequency converter reference to 60 Hz. (This sets the maximum frequency converter speed at 60 Hz. Note that 50/60 Hz is a regional variation).

Illustration 6.5 3-03 Maximum Reference

 6-10 Terminal 53 Low Voltage. Set minimum external voltage reference on terminal 53 at 0 V. (This sets the minimum input signal at 0 V).

		\sim	0
14.7%	0.00A	1(1)	64
Analog Reference		Q3-21	130BT764.10
6-10 Terminal 53 Low Voltage	/		13(
0.00 V		\bigtriangledown	

 6-11 Terminal 53 High Voltage. Set maximum external voltage reference on terminal 53 at 10 V. (This sets the maximum input signal at 10 V).

14.7%	0.00A	1(1)	65.10
Analog Reference		Q3-21	130BT765.1
6-11 Terminal 53 High Voltage			13(
10.00 V			

Illustration 6.7 6-11 Terminal 53 High Voltage

 6-14 Terminal 53 Low Ref./Feedb. Value. Set minimum speed reference on terminal 53 at 20 Hz. (This tells the frequency converter that the minimum voltage received on terminal 53 (0 V) equals 20 Hz output).

14.7 %	0.00 A	1(1)
Analog Reference		Q3-21
6 - 14 Terminal 53 Ref./Feedb.V		
000020.000	_	

Danfoss

Illustration 6.8 6-14 Terminal 53 Low Ref./Feedb. Value

 6-15 Terminal 53 High Ref./Feedb. Value. Set maximum speed reference on terminal 53 at 50 Hz. (This tells the frequency converter that the maximum voltage received on terminal 53 (10 V) equals 50 Hz output).

Illustration 6.9 6-15 Terminal 53 High Ref./Feedb. Value

With an external device providing a 0-10 V control signal connected to frequency converter terminal 53, the system is now ready for operation.

NOTICE

The scroll bar on the right in the last illustration of the display is at the bottom, indicating the procedure is complete.

Illustration 6.10 shows the wiring connections used to enable this set up.

Illustration 6.10 Wiring Example for External Device Providing 0-10 V Control Signal

6.3 Control Terminal Programming Examples

Control terminals can be programmed.

- Each terminal has specified functions it is capable of performing.
- Parameters associated with the terminal enable the function.
- For proper frequency converter functioning, the control terminals must be:
 - Wired properly
 - Programmed for the intended function
 - Receiving a signal

See *Table 6.1* for control terminal parameter number and default setting. (Default setting can change based on the selection in *0-03 Regional Settings*).

The following example shows accessing terminal 18 to see the default setting.

1. Press [Main Menu] twice, scroll to parameter group 5-** Digital In/Out Parameter Data Set and press [OK].

14.6%	0.00A	1(1) of
Main Menu		
2-** Brakes		
3-** Reference / Ra	amps	
4-** Limits / Warni	ngs	
5-** Digital In/Out		

2. Scroll to parameter group *5-1* Digital Inputs* and press [OK].

14.7%	0.00A	1(1)	130BT769.10
Digital In/Out		5-**	0BT7
5-0* Digital I/O	mode		13
5-1* Digital Inp	 outs	 	
5-4* Relays			
5-5* Pulse Inpu	it		

Illustration 6.12 Parameter Group Display Example

3. Scroll to *5-10 Terminal 18 Digital Input*. Press [OK] to access function choices. The default setting *Start* is shown.

Illustration 6.13 Function Choice Display Example

6.4 International/North American Default Parameter Settings

Setting 0-03 Regional Settings [0] International or [1] North America changes the default settings for some parameters. Table 6.1 lists those parameters that are affected.

Parameter	International default	
	parameter value	default parameter
		value
0-03 Regional	International	North America
Settings		
0-71 Date Format	DD-MM-YYYY	MM/DD/YYYY
0-72 Time Format	24 h	12 h
1-20 Motor Power	See Note 1	See Note 1
[kW]		
1-21 Motor Power	See Note 2	See Note 2
[HP]		
1-22 Motor Voltage	230 V/400 V/575 V	208 V/460 V/575 V
1-23 Motor	50 Hz	60 Hz
Frequency		
3-03 Maximum	50 Hz	60 Hz
Reference		
3-04 Reference	Sum	External/Preset
Function		
4-13 Motor Speed	1500 RPM	1800 RPM
High Limit [RPM]		
See Note 3		
4-14 Motor Speed	50 Hz	60 Hz
High Limit [Hz]		
See Note 4		
4-19 Max Output	100 Hz	120 Hz
Frequency		
4-53 Warning Speed	1500 RPM	1800 RPM
High		
5-12 Terminal 27	Coast inverse	External interlock
Digital Input		
5-40 Function Relay	Alarm	No alarm
6-15 Terminal 53	50	60
High Ref./Feedb.		
Value		
6-50 Terminal 42	Speed 0-HighLim	Speed 4-20 mA
Output		
14-20 Reset Mode	Manual reset	Infinite auto reset

Parameter	International default parameter value	default parameter
		value
22-85 Speed at	1500 RPM	1800 RPM
Design Point [RPM]		
See Note 3		
22-86 Speed at	50 Hz	60 Hz
Design Point [Hz]		
24-04 Fire Mode Max	50 Hz	60 Hz
Reference		

Table 6.1 International/North American Default Parameter Settings

6.5 Parameter Menu Structure

Establishing the correct programming for applications often requires setting functions in several related parameters. These parameter settings provide the frequency converter with the system details it needs to operate properly. System details may include such things as:

- Input and output signal types
- Programming terminals
- Minimum and maximum signal ranges
- Custom displays
- Automatic restart
- Other features
- See the LCP display to view detailed parameter programming and setting options.
- Press [Info] in any menu location to view additional details for that function.
- Press and hold [Main Menu] to enter a parameter number for direct access to that parameter.
- Details for common application set-ups are provided in *chapter 7 Application Examples*.

Danfoss

**-0			Motor Mode	1-76	Start Current	5-0		-	Motor Limits
0-0	Basic Settings	-14	Damping Gain	1-8	Stop Adjustments	3-04	Reference Function	4-10	Motor Speed Direction
5-6-	Language	<u></u>	Low speed Filter Time Const.	08-1	Function at stop Min Encode for Function of Ston (DBM)		References		Motor Speed Low LIMIT [KPM]
		1 <u>0</u>	High speed Fliter lime Const.	- α - α	Min speed for Function at stop (RPM)	α-10 11	Preset Reference	4-17	Motor speed Low Limit [HZ]
-03 0		/	voltage filter time const.	78-1	Min speed for Function at stop [Hz]		Jog Speed [HZ]	4-13	Motor speed High Limit [KPIM]
-0 5 6		1-2*	Motor Data		Precise Stop Function	2-17	Catch up/slow Down Value	4-14	Motor Speed High Limit [Hz]
60-0		1-20	Motor Power [KW]	1-84	Precise Stop Counter Value	<u>5</u>	Keterence Site	4-16	Iorque Limit Motor Mode
*		1-21	Motor Power [HP]	1-85	Precise Stop Speed Compensation	3-14	Preset Kelative Keterence	4-17	Iorque Limit Generator Mode
01-0		1-22	Motor Voltage		Delay	3-15	Reference Resource 1	4-18	Current Limit
0-11		1-23	Motor Frequency	1-9*	Motor Temperature	3-16	Reference Resource 2	4-19	Max Output Frequency
0-12	This Set-up Linked to	1-24	Motor Current	1-90	Motor Thermal Protection	3-17	Reference Resource 3	4-2*	Limit Factors
0-13		1-25	Motor Nominal Speed	1-91	Motor External Fan	3-18	Relative Scaling Reference Resource	4-20	Torque Limit Factor Source
0-14	Readout: Edit Set-ups / Channel	1-26	Motor Cont. Rated Torque	1-93	Thermistor Resource	3-19	Jog Speed [RPM]	4-21	Speed Limit Factor Source
0-15	_	1-29	Automatic Motor Adaptation (AMA)	1-94	ATEX ETR cur.lim. speed reduction	3-4*	Ramp 1	4-3*	Motor Speed Mon.
0-2*		1-3*	Adv. Motor Data	1-95	KTY Sensor Type	3-40	Ramp 1 Type	4-30	Motor Feedback Loss Function
02-0		1-30	Stator Resistance (Rs)	1-96	KTY Thermistor Resource	3-41	Ramp 1 Ramp Up Time	4-31	Motor Feedback Speed Frror
0-21		1-21	Rotor Resistance (Rr)	1-97	KTY Threshold level	3-47	Ramp 1 Ramp Down Time	4-32	Motor Feedback Loss Timeour
0-22		1-33	Stator Leakage Reactance (X1)	1-98	ATEX ETR interpol. points frea.	3-45	Ramp 1 S-ramp Ratio at Accel. Start	4-34	Tracking Error Function
0-23		1-34	Rotor Leakage Reactance (X2)	1-99	ATEX ETR interpol points current	3-46	Ramp 1 S-ramp Ratio at Accel. End	4-35	Tracking Error
0-24		1-35	Main Reactance (Xh)	2-**	Brakes	3-47	Ramn 1 S-ramn Batio at Derel Start	4-36	Tracking Error Timeout
20-21		1-26	Iron Loss Desistance (Dfa)	*0-0	DC-Brake	2-18	Stamp tatio at Defail	1-27	Tracking Error Pamping
		1.27					Dame 2	000	Tracking Littor Namping
		000		200			Pame 2 Tuno		Traching Error Manping mineout
		00,-				00-0	Nallip 2 Type	40-4	
		-104 104	MOUNT POLES	70-7				- - - -	Auj. warnings
0-32	Max value of User-defined Readout	140	Back Einif at 1000 KPIN	z-03		20-5	Ramp z Ramp Down Time	4-00	
0-3/		4	Motor Angle Offset	2-04	DC Brake Cut In Speed [Hz]	3-55	Ramp 2 S-ramp Ratio at Accel. Start	4-51	Warning Current High
0-38		1-44	d-axis Inductance Sat. (LdSat)	2-05	Maximum Reference	3-56	Ramp 2 S-ramp Ratio at Accel. End	4-52	Warning Speed Low
0-39		1-45	q-axis Inductance Sat. (LqSat)	2-06	Parking Current	3-57	Ramp 2 S-ramp Ratio at Decel. Start	4-53	Warning Speed High
0-4*	_	1-46	Position Detection Gain	2-07	Parking Time	3-58	Ramp 2 S-ramp Ratio at Decel. End	4-54	Warning Reference Low
0-40	_	1-47	Low Speed Torque Calibration	2-1*	Brake Energy Funct.	3-6*	Ramp 3	4-55	Warning Reference High
0-41	[Off] Key on LCP	1-48	Inductance Sat. Point	2-10	Brake Function	3-60	Ramp 3 Type	4-56	Warning Feedback Low
0-42	[Auto on] Key on LCP	1-5*	Load Indep. Setting	2-11	Brake Resistor (ohm)	3-61	Ramp 3 Ramp up Time	4-57	Warning Feedback High
0-43	[Reset] Key on LCP	1-50	Motor Magnetisation at Zero Speed	2-12	Brake Power Limit (kW)	3-62	Ramp 3 Ramp down Time	4-58	Missing Motor Phase Function
0-44	[Off/Reset] Key on LCP	1-51	Min Speed Normal Magnetising [RPM]	2-13	Brake Power Monitoring	3-65	Ramp 3 S-ramp Ratio at Accel. Start	4-6*	Speed Bypass
0-45	[Drive Bypass] Key on LCP	1-52	Min Speed Normal Magnetising [Hz]	2-15	Brake Check	3-66	Ramp 3 S-ramp Ratio at Accel. End	4-60	Bypass Speed From [RPM]
0-5*	Ī	1-53	Model Shift Frequency	2-16	AC brake Max. Current	3-67	Ramp 3 S-ramp Ratio at Decel. Start	4-61	Bypass Speed From [Hz]
0-50		1-54	Voltage reduction in fieldweakening	2-17	Over-voltage Control	3-68	Ramp 3 S-ramp Ratio at Decel. End	4-62	Bypass Speed To [RPM]
0-51		1-55	U/f Characteristic - U	2-18	Brake Check Condition	3-7*	Ramp 4	4-63	Bypass Speed To [Hz]
*9-0		1-56	U/f Characteristic - F	2-19	Over-voltage Gain	3-70	Ramp 4 Type	5-**	Digital In/Out
09-0		1-58	Flystart Test Pulses Current	2-2*	Mechanical Brake	3-71	Ramp 4 Ramp up Time	5-0*	Digital I/O mode
0-61		1-59	Flystart Test Pulses Frequency	2-20	Release Brake Current	3-72	Ramp 4 Ramp Down Time	5-00	Digital I/O Mode
0-65		1-6*	Load Depen. Setting	2-21	Activate Brake Speed [RPM]	3-75	Ramp 4 S-ramp Ratio at Accel. Start	5-01	Terminal 27 Mode
0-66		1-60	Low Sheed Load Compensation		Activate Brake Speed [H7]	3-76	Ramn 4 S-ramn Batio at Accel End	20-2	Terminal 20 Mode
29-0-0		1-61	High Speed Load Compensation	2,72	Activate Brake Delay	24.5	Pamp A Stamp namo at Necci. End Pamp A Stramp Patio at Decel Start		Digital Inputs
/0-0			Clip Componention		ALLIVATE DIARE DETAY	04 c	Dame 4 S-Tattip hatto at Decel. Statt		Torminal 18 Digital Incut
		<u>2</u>		2-24		0/-0		0.1	
-0A				CZ-2	brake kelease IIme	γ-γ γ	Other Kamps		Terminal 19 Digital Input
	_	1-64	Resonance Dampening		l orque Ket	3-80	Jog Kamp Time	5-12	lerminal 27 Digital Input
1-**		1-65	Resonance Dampening Time Constant		Torque Ramp Time	3-81	Quick Stop Ramp Time	5-13	Terminal 29 Digital Input
1-0*		1-66	Min. Current at Low Speed	2-28	Gain Boost Factor	3-82	Quick Stop Ramp Type	5-14	Terminal 32 Digital Input
1-00		1-67	Load Type	2-29	Torque Ramp Down Time	3-83	Quick Stop S-ramp Ratio at Decel. Start	rt 5-15	Terminal 33 Digital Input
1-01		1-68	Minimum Inertia	2-30	Position P Start Proportional Gain	3-84	Quick Stop S-ramp Ratio at Decel. End	d 5-16	Terminal X30/2 Digital Input
1-02		1-69	Maximum Inertia	2-31	Speed PID Start Proportional Gain	3-9*	Digital Pot.Meter		Terminal X30/3 Digital Input
1-03		1-7*	Start Adjustments	7-37	Speed PID Start Integral Time	3-90	Sten Size	5-18	Terminal X30/4 Digital Input
4		1-70	PM Start Mode	2-33	Speed PID Start Lowpass Filter Time	3-91	Ramo Time	5-19	Terminal 37 Safe Stop
1-05		1-71	Start Delav	3-**	Reference / Ramos	3-97	Power Restore	5-20	Terminal X46/1 Digital Input
1-06		1-72	Start Function	*0-6	Reference Limits	3-03	Maximum I imit	5-71	Terminal X46/3 Digital Input
1-07		1-73	Elving Start	3-00	Reference Range	3-94	Minimum Limit	с <i>с</i> -2	Terminal X46/5 Dicital Innut
»		VZ-1	Start Sheed [RDM]	0.0	Reference/Feedback Thrit	202	Ramo Delav	77.72	Terminal X46/7 Digital Input
		1	קנמור קרבים נואו ואון	2				24	VTO/ DIGIT
		۲ ۲				A.M.M.		к с ц	Territoria (NAC /O D) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Danfoss

6

Programming

Operating Instructions

rogramming	Operating Instructions
	 12-3: attented 12-0: IP Settings 12-00: IP Address Assignment 12-01: IP Address Assignment 12-03: Default Gateway 12-03: Default Gateway 12-04: Derress Expires 12-05: Lease Expires 12-06: Name Servers 12-07: Domain Name 12-08: Host Name 12-09: Physical Address 12-09: Physical Address 12-11: Link Duration 12-10: Link Status 12-11: Link Duration 12-11: Link Duration 12-12: Auto Negoritation 12-13: Link Speed 12-14: Link Duplex 12-14: Link Duplex 12-24: Process Data Config Read Size 12-33: Cirp Revision 12-34: Control 12-44: Modbus TCP
	 9-18 Node Address 9-22 Parameters for Signals 9-23 Parameters for Signals 9-24 Fault Message Counter 9-45 Fault Mumber 9-45 Fault Mumber 9-55 Fault Situation Counter 9-53 Profibus Warning Word 9-63 Actual Baud Rate 9-64 Device Identification 9-65 Control Word 1 9-67 Control Word 1 9-68 Control Word 1 9-69 Device Identification 9-68 Control Word 1 9-69 Device Identification 9-69 Device Identification 9-69 Device Identification 9-81 Device Identification 9-82 Defined Parameters (1) 9-90 Defined Parameters (2) 9-91 Changed Parameters (3) 9-92 Changed Parameters (3) 9-93 Defined Parameters (4) 9-94 Changed Parameters (5) 9-93 Changed Parameters (5) 9-94 Changed Parameters (5) 9-95 Changed Parameters (5) 9-96 Cantrol Save Data Values 9-90 Changed Parameters (1) 9-91 Changed Parameters (5) 9-92 Changed Parameters (5) 9-93 Changed Parameters (5) 9-94 Changed Parameters (5) 9-95 Changed Parameters (5) 9-94 Changed Parameters (5) 9-95 Changed Parameters (5) 9-96 Cantrol Save Data Values 9-96 Cantrol Save Data Values 9-97 Changed Parameters (5) 9-98 Defined Parameters (5) 9-99 Changed Parameters (5) 9-99 Changed Parameters (5) 9-99 Changed Parameters (5) 9-90 Changed Parameters (5) 9-90 Changed Parameters (5) 9-90 Changed Parameters (5) 9-91 Changed Parameters (5) 9-92 Changed Parameters (5) 9-93 Changed Parameters (5) 9-94 Changed Parameters (5) 9-94 Changed Parameters (5) 9-95 Changed Parameters (5) 9-94 Changed Parameters (5) 9-95 Changed Parameters (5) 9-96 Changed Parameters (5) 9-96 Changed Parameters (5) <
ain t factor lamp Min. Ref. Max. Ref. mal/ Inv. si/ Inv. Ctrl.	Process PID Eved Faud Ramp up Process PID Feed Faud Gain Process PID Feed Faud Ramp up Process PID Feed Faud Ramp up Process PID Filter Time Process PID Fb. Filter Time Process PID Fb. Filter Time Comm. and Dottons General Settings Control Word Timeout Function Reset Control Word Timeout Diagnosis Trigger Readout Filtering Configurable Control Word Timeout Diagnosis Trigger Readout Filtering Configurable Control Word CTW Configurable Control Word CTW Product Code Configurable Control Word CTW Configurable Control Word CTW Product Code FC Port Settings Product Code Product Code Product Code Protocol Set Protocol Set Prighal/Bus PCD Write Configuration PCD Read PCD Read P
	7-5-1 7-55 7-55 7-55 7-55 7-55 8-01 8-01 8-02 8-03 8-03 8-03 8-03 8-03 8-03 8-03 8-14 8-10 8-14 8-13 8-13 8-13 8-13 8-13 8-13 8-13 8-13
Terminal 34 High Ref/Feedb. Value Terminal 54 High Ref/Feedb. Value Terminal X30/11 Low Voltage Terminal X30/11 Low Voltage Term. X30/11 Low Voltage Term. X30/11 High Ref/Feedb. Value Term. X30/11 Filter Time Constant Analog Input 4 Terminal X30/12 Low Voltage Terminal X30/12 High Notlage Terminal X30/12 Low Voltage Terminal X30/12 High Ref/Feedb. Value Terminal 42 Output Min Scale Terminal 42 Output Min Scale	Analog Output Filter Analog Output 1 Terminal X30/8 Output 2 Terminal X30/8 Output 2 Terminal X30/8 Bus. Control Terminal X30/8 Bus. Control Terminal X45/1 Output Timeout Preset Analog Output 3 Terminal X45/1 Output Timeout Preset Terminal X45/1 Output Timeout Preset Terminal X45/3 Output Timeout Preset Speed PID Integral Time Speed PID Integral Time
6-25 6-25 6-38 6-31 6-34 6-35 6-44 6-44 6-44 6-44 6-45 6-53 6-53 6-53 6-53 6-53 6-53 6-53 6-5	6-5-4 6-5-5 6-60 6-61 6-65 6-67 6-61 6-73 6-73 6-73 6-73 6-73 6-73 6-73 6-73
Terminal X46/13 Digital Input Digital Outputs Terminal Z46/13 Digital Input Terminal 27 Digital Output Term X30/7 Digi Out (MCB 101) Term X30/7 Digi Out (MCB 101) Term X30/7 Digi Out (MCB 101) Relay Function Relay On Delay, Relay On Delay, Relay Of Delay, Relay Of Delay, Relay Term 29 Low Frequency Term 29 Low Ref./Feedb. Value Pulse Filter Time Constant #29 Term 33 Low Frequency Term 33 Low Ref./Feedb. Value	term. 35 rign retr.reeado. value Pulse Eflet Time Constant #33 Pulse Output Max Freq #27 Terminal 27 Pulse Output Variable Pulse Output Max Freq #30/6 Pulse Output Max Freq #30/6 Pulse Output Max Freq #30/6 Pulse Output Max Freq #330/6 Pulse Out #27 Bus Control Pulse Out #27 Bus Control Pulse Out #29 Fimeout Preset Pulse Out #39/6 Bus Control Pulse Out #33/6 Bus Control Pulse Out #39 Fimeout Preset Pulse Out #39 Fimeout Preset Pulse Out #39 Fimeout Preset Pulse Out #39/6 Fimeout Preset Pulse Out #39 Fincout Preset Pulse Out #30/6 Fimeout Preset Pulse Out #39 Fincout Preset Pulse Out #30/6 Fimeout Finction Pulse Out #30/6 Fimeout Finction Pu
, , , , , , , , , , , , , , , , , , , 	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -

16-82 Fieldbus REF 1 16-84 Comm. Option STW 16-85 FC Port CTW 1 16-86 FC Port REF 1 16-88 Dus Readout Alarm/Warning 16-89 Configurable Alarm/Marning Word	16-90 16-91 16-92 16-92 16-93 16-93 17-93	17-53 17-56 17-68 17-60 17-60 18-34 18-36	 30-00 Wobble Mode 30-01 Wobble Delta Frequency [Hz] 30-02 Wobble Delta Frequency [%] 30-03 Wobble Dump Frequency [%] 30-04 Wobble Jump Frequency [%] 30-05 Wobble Jump Frequency [%] 30-06 Wobble Sequence Time 30-07 Wobble Sequence Time 30-08 Wobble Ration 30-10 Wobble Ration
 16-13 Frequency 16-14 Motor current 16-15 Frequency [%] 16-16 Torque [Nm] 16-17 Speed [RPM] 16-18 Motor Thermed 			16-71 Relay Output [bin] 16-72 Counter A 16-73 Prounter A 16-74 Prec. Stop Counter 16-75 Analog In X30/11 16-76 Analog In X30/8 16-77 Analog Out X45/1 16-78 Analog Out X45/1 16-79 Analog Out X45/1 16-80 Fieldbus & FC Port 16-80 Fieldbus CTW 1
 15-14 Samples Before Trigger 15-2* Historic Log 15-20 Historic Log: Event 15-21 Historic Log: Value 15-22 Historic Log: Time 15-22 Historic Log: Time 	 15-30 Fault Log 15-30 Fault Log; Value 15-31 Fault Log; Value 15-48 Drive Identification 15-40 FC Type 15-42 Voltage 15-42 Software Version 		 16-0* General Status 16-00 Control Word 16-01 Reference [Unit] 16-02 Reference % 16-03 Status Word 16-05 Main Actual Value [%] 16-05 Custom Readout 16-11 Power [ky] 16-11 Power [hp] 16-12 Motor Voltage 16-12 Motor Voltage
 14-1* Mains On/Off 14-10 Mains Failure 14-11 Mains Voltage at Mains Fault 14-11 Function at Mains Imbalance 14-14 Kin Backup Time Out 14-15 Kin Backup Time Out 			 15-02 kWh Counter 15-02 kWh Counter 15-03 Pover Up's 15-04 Over Temp's 15-06 Reset kWh Counter 15-07 Reset Running Hours Counter 15-18 Logging Source 15-11 Logging Interval 15-11 Logging Interval 15-13 Logging Mode 15-13 Logging Mode
12-42 Slave Exception Message Count 12-5* EtherCAT 12-50 Configured Station Alias 12-51 Configured Station Address 12-59 EtherCAT Status 12-59 EtherCAT Status			 13-44 Logic Rule Boolean 3 13-55 States 13-55 Lontroller Event 13-51 SL Controller Action 13-52 LONTroller Action 14-0* Inverter Switching 14-05 Switching Pattern 14-01 Switching Frequency 14-04 PWM Random 14-06 Dead Time Compensation

				35-42 Term. A48/2 LOW CURRENT
			PCD 1 Read from	
30-21 High Starting Torque Current [%]	32-64 PID Bandwidth	33-40 Behaviour atEnd Limit Switch	34-22 PCD 2 Read from MCO	35-45 Term. X48/2 High Ref./Feedb. Value
			PCD 3 Read from	
30-23 Locked Rotor Detection Time [s]	32-66 Acceleration Feed-Forward	33-42 Positive Software End Limit	34-24 PCD 4 Read from MCO	42-** Safety Functions
30-24 Locked Rotor Detection Speed Error	32-67 Max. Tolerated Position Error	33-43 Negative Software End Limit Active	34-25 PCD 5 Read from MCO	42-1* Speed Monitoring
[%]	32-68 Reverse Behavior for Slave	33-44 Positive Software End Limit Active	34-26 PCD 6 Read from MCO	42-10 Measured Speed Source
30-8* Compatibility (I)	32-69 Sampling Time for PID Control	33-45 Time in Target Window	34-27 PCD 7 Read from MCO	42-11 Encoder Resolution
30-80 d-axis Inductance (Ld)	32-70 Scan Time for Profile Generator	33-46 Target Window LimitValue	34-28 PCD 8 Read from MCO	42-12 Encoder Direction
30-81 Brake Resistor (ohm)	32-71 Size of the Control Window	33-47 Size of Target Window	34-29 PCD 9 Read from MCO	42-13 Gear Ratio
30-83 Speed PID Proportional Gain	(Activation)			
	32-72 Size of the Control Window (Deactiv.)			
			1 -	
		Terminal X3//2 Digital		
		lerminal		
	32-80 Maximum Velocity (Encoder)	Terminal	34-50 Actual Position	
31-03 Test Mode Activation	32-81 Shortest Ramp	33-55 Terminal X57/6 Digital Input	34-51 Commanded Position	42-20 Safe Function
31-10 Bypass Status Word	32-82 Ramp Type	33-56 Terminal X57/7 Digital Input	34-52 Actual Master Position	42-21 Type
31-11 Bypass Running Hours	32-83 Velocity Resolution		34-53 Slave Index Position	
		Terminal		
		Terminal		
		Torminal		
		ermina		
32-01 Incremental Resolution	32-88 Dec. up for limited jerk	Terminal	34-58 Actual Velocity	42-31 Reset Source
32-02 Absolute Protocol	32-89 Dec. down for limited jerk	Terminal	34-59 Actual Master Velocity	42-33 Parameter Set Name
32-03 Absolute Resolution	32-9* Development	33-64 Terminal X59/2 Digital Output	34-60 Svnchronizing Status	42-35 S-CRC Value
		Terminal		
		Terminal		
		T		
		_		
32-09 Encoder Monitoring	33-02 Ramp for Home Motion		34-70 MCO Alarm Word 1	42-43 Delta T
32-10 Rotational Direction	33-03 Velocity of Home Motion	33-8* Global Parameters	34-71 MCO Alarm Word 2	42-44 Deceleration Rate
32-3* Encoder 1	33-13 Accuracy Window for Position Sync.	33-85 MCO Supplied by External 24VDC		42-5* SLS
32-30 Incremental Signal Type	33-14 Relative Slave Velocity Limit	33-86 Terminal at alarm		42-50 Cut Off Speed
32-31 Incremental Resolution	33-15 Marker Number for Master	33-87 Terminal state at alarm	35-05 Term. X48/10 Input Type	42-51 Speed Limit
32-32 Absolute Protocol	33-16 Marker Number for Slave		35-06 Temperature Sensor Alarm Function	42-52 Fail Safe Reaction
32-33 Absolute Resolution	33-17 Master Marker Distance	33-9* MCO Port Settings	35-1* Temp. Input X48/4	42-53 Start Ramp
32-35 Absolute Encoder Data Length	33-18 Slave Marker Distance	33-90 X62 MCO CAN node ID	35-14 Term. X48/4 Filter Time Constant	42-54 Ramp Down Time
32-36 Absolute Encoder Clock Frequency	33-19 Master Marker Type	33-91 X62 MCO CAN baud rate	35-15 Term. X48/4 Temp. Monitor	42-8* Status
32-37 Absolute Encoder Clock Generation	33-20 Slave Marker Type			42-80 Safe Option Status
			35-17 Term. X48/4 High Temp. Limit	
			•	
			1 C - 1	
		PCD 7 Write to		

<u>Danfoss</u>

6.6 Remote Programming with MCT 10 Setup Software

Danfoss has a software program available for developing, storing, and transferring frequency converter programming. The MCT 10 Set-up Software allows the user to connect a PC to the frequency converter and perform live programming rather than using the LCP. Additionally, all frequency converter programming can be done off-line and simply downloaded to the frequency converter. Or the entire frequency converter profile can be loaded onto the PC for back-up storage or analysis.

The USB connector or RS-485 terminal are available for connecting the PC to the frequency converter.

Operating Instructions

7 Application Examples

7.1 Introduction

The examples in this section are intended as a quick reference for common applications.

- Parameter settings are the regional default values unless otherwise indicated (selected in *0-03 Regional Settings*).
- Parameters associated with the terminals and their settings are shown next to the drawings.
- Where switch settings for analog terminals A53 or A54 are required, these are also shown.

7.2 Application Examples

ACAUTION

Thermistors must use reinforced or double insulation to meet PELV insulation requirements.

			Parame	eters
FC		.10	Function	Setting
+24 V	120	30BB929.10	1-29 Automatic	[1] Enable
+24 V	130	30Bf	Motor	complete
D IN	180	-	Adaptation	AMA
D IN	190		(AMA)	
сом	200		5-12 Terminal 27	[2]* Coast
D IN	270]	Digital Input	inverse
D IN	290		*=Default Value	
DIN	320		Notes/comments	: Parameter
DIN	330		group 1–2* Motor	<i>Data</i> must be
D IN	370		set according to	
			j.	
+10 V	50 ¢			
A IN	530			
A IN	54 ¢			
сом	550			
A OUT	42			
сом	390			
	\searrow			

Table 7.1 AMA with T27 Connected

Table 7.2 AMA without T27 Connected

Table 7.3 Analog Speed Reference (Voltage)

			Parame	eters
FC		10	Function	Setting
+24 V	120	01 100	6-12 Terminal 53	4 mA*
+24 V	130	30BF	Low Current	
D IN	180		6-13 Terminal 53	20 mA*
D IN	190		High Current	
СОМ	200		6-14 Terminal 53	0 RPM
D IN	270		Low Ref./Feedb.	
D IN	290		Value	
D IN	320		6-15 Terminal 53	1,500 RPM
DIN	330		High Ref./Feedb.	,
D IN	370		Value	
+10 V	50 0		*=Default Value	
A IN	530	+	Notes/comments	:
A IN	540			
СОМ	550			
A OUT	420	 4 - 20mA		
СОМ	390	1 2011		
\square				
U - I				
A53				

Table 7.4 Analog Speed Reference (Current)

Table 7.5 Start/Stop Command with Safe Torque Off

Table 7.6 Pulse Start/Stop

Danfoss

Operating Instructions

			Paramet	ters
FC		.10	Function	Setting
+24 V	120-	 30BB934.10	5-10 Terminal 18	[8] Start
+24 V	130	30BE	Digital Input	
D IN	180	 1	5-11 Terminal 19	[10]
D IN	190		Digital Input	Reversing*
сом	20 ¢			
D IN	270			
D IN	29 ¢		5-12 Terminal 27	[0] No
D IN	320-		Digital Input	operation
D IN	330-		5-14 Terminal 32	[16] Preset
D IN	370-		Digital Input	ref bit 0
			5-15 Terminal 33	[17] Preset
+10 V	50 ¢		Digital Input	ref bit 1
A IN A IN	53¢		3-10 Preset	
COM	54¢ 550		Reference	
A OUT	420		Preset ref. 0	25%
сом	390		Preset ref. 1	50%
	J		Preset ref. 2	75%
	$\langle $		Preset ref. 3	100%
	\sim		*=Default Value	•
			Notes/comments:	

Table 7.7 Start/Stop with Reversing and 4 Preset Speeds

Table 7.8 External Alarm Reset

Table 7.9 Speed Reference (using a Manual Potentiometer)

Table 7.10 Speed Up/Down

Danfoss

				Parame	eters
FC			10	Function	Setting
+24 V	120		30BB685.10	8-30 Protocol	FC*
+24 V	130		0BB	8-31 Address	1*
D IN	180		13	8-32 Baud Rate	9,600*
D IN	190			*=Default Value	
СОМ	200			Notes/comments	•
D IN	270				
D IN	290			Select protocol, a	
D IN	320			Baud rate in the a	
D IN	330			mentioned param	ieters.
D IN	370				
+10 V	50 수				
A IN	530				
A IN	540				
СОМ	550				
A OUT	420				
СОМ	390				
	- 010				
	- 020				
	- 030				
	- 040				
12 r/	- 050		RS-485		
	- 060		113-403		
	610				
	680	+			
	69¢—	-			
L					

Table 7.11 RS-485 Network Connection

			Parameters	
VLT		12	Function	Setting
+24 V	120	30BB686.	1-90 Motor	[2]
+24 V	130	OBB	Thermal	Thermistor
D IN	180	13	Protection	trip
D IN	190		1-93 Thermistor	[1] Analog
СОМ	200		Source	input 53
D IN	270		*=Default Value	
D IN	290			
D IN	320		Notes/comments	:
D IN	330		If only a warning	is desired set
D IN	370		1-90 Motor Therm	
+10 V	500		to [1] Thermistor v	warning.
A IN	530			
A IN	540			
СОМ	550			
A OUT	420			
СОМ	390			
U-1				
	\bigtriangledown			
A53				

Danfoss

Application Examples

Operating Instructions

			Parameters	
FC		10	Function	Setting
+24 V	120	839.	4-30 Motor	[1] Warning
+24 V	130	30BB839.10	Feedback Loss	
DIN	180	13	Function	
D IN	190		4-31 Motor	100 RPM
СОМ	200		Feedback Speed	
D IN	270		Error	
D IN	290		-	5 -
D IN	320		4-32 Motor	5 s
D IN	330		Feedback Loss	
D IN	370		Timeout	
			7-00 Speed PID	[2] MCB 102
+10 V	500		Feedback Source	
A IN	530		17-11 Resolution	1024*
A IN	540		(PPR)	
СОМ	550		13-00 SL	[1] On
A OUT	420		Controller Mode	
СОМ	39 ¢		13-01 Start Event	[19] Warning
			13-02 Stop Event	[44] Reset
,	010			key
₩	020-		13-10 Comparato	[21] Warning
	030-			-
			r Operand	no.
<u> </u>	040		13-11 Comparato	[1] ≈*
22 pt	050		r Operator	
	06 ¢		13-12 Comparato	90
			r Value	
			13-51 SL	[22]
			Controller Event	Comparator 0
			13-52 SL	[32] Set
			Controller Action	digital out A
				low
			5-40 Function	[80] SL digital
			Relay	output A
			*=Default Value	. ·
			Notes/comments	
			If the limit in the	
			monitor is exceed	
			90 is issued. The	
			Warning 90 and in	
			that Warning 90 k	
			then relay 1 is trig	
			External equipme	
			indicate that servi	•
			If the feedback er	5
			below the limit ag	-
			s, the frequency o	onverter
			continues and the	e warning
			disappears. But re	lay 1 is still
			triggered until [Re	eset] on the

Table 7.14 Mechanical Brake Control (Open Loop)

Table 7.13 Using SLC to Set a Relay

130BA156.12

Operating Instructions

7.3 Connection Examples for Control of Motor with External Signal Provider

NOTICE

The following examples refer only to the frequency converter control card (right LCP), *not* the filter.

7.3.1 Start/Stop

Terminal 18 = 5-10 Terminal 18 Digital Input [8] Start Terminal 27 = 5-12 Terminal 27 Digital Input [0] No operation (Default coast inverse) Terminal 37 = Safe stop

Illustration 7.5 Start/Stop Parameters

7.3.2 Pulse Start/Stop

Terminal 18 = 5-10 Terminal 18 Digital Input [9] Latched start

Terminal 27= 5-12 Terminal 27 Digital Input [6] Stop inverse Terminal 37 = Safe torque off

Illustration 7.6 Pulse Start/Stop Parameters

7.3.3 Speed Up/Down

Terminals 29/32 = Speed up/down

Terminal 18 = 5-10 Terminal 18 Digital Input [9] Start (default)

Terminal 27 = 5-12 Terminal 27 Digital Input [19] Freeze reference

Terminal 29 = 5-13 Terminal 29 Digital Input [21] Speed up

Terminal 32 = 5-14 Terminal 32 Digital Input [22] Speed down

Illustration 7.7 Speed Control Parameters

7.3.4 Potentiometer Reference

Voltage reference via a potentiometer

Reference Source 1 = [1] Analog input 53 (default)

Terminal 53, Low Voltage = 0 V Terminal 53, High Voltage = 10 V Terminal 53, Low Ref./Feedback = 0 RPM Terminal 53, High Ref./Feedback = 1500 RPM Switch S201 = OFF (U)

Illustration 7.8 Potentiometer Voltage Reference

Danfoss

8 Status Messages

8.1 Status Display

When the frequency converter is in Status mode, status messages are generated automatically and appear in the bottom line of the display (see Illustration 8.1).

Status		1(1)	7.1
799RPM	7.83A	36.4kW	BO3
	0.000		1 30BB037.11
	53.2%		-
Auto Remot Hand Local	e Ramping		
Off	Stop Running		
	Jogging		
	:		
	Stand by		

1	Operation mode (see Table 8.1)	
2	Reference site (see Table 8.2)	
3	Operation status (see Table 8.3)	

Illustration 8.1 Status Display

8.2 Status Message Definitions Table

Table 8.1 to Table 8.3 describe the displayed status messages.

Off	The frequency converter does not react to any control signal until [Auto On] or [Hand On] is pressed.
Auto On	The frequency converter is controlled from the control terminals and/or the serial communication.
Hand On	Control the unit via the navigation keys on the LCP. Stop commands, reset, reversing, DC brake, and other signals applied to the control terminals can override local control.

Table 8.1 Operation Mode

Remote	The speed reference is given from external signals, serial communication, or internal
Local	preset references. The frequency converter uses [Hand On] control or reference values from the LCP.

Table 8.2 Reference Site

AC Brake	AC Brake was selected in 2-10 Brake Function.		
	The AC brake over-magnetises the motor to		
	achieve a controlled slow down.		
AMA finish OK	Automatic motor adaptation (AMA) was		
	carried out successfully.		
AMA ready	AMA is ready to start. Press [Hand On] to start		
AMA running	AMA process is in progress.		
Braking	The brake chopper is in operation. The brake		
	resistor absorbs generative energy.		
Braking max.	The brake chopper is in operation. The power		
	limit for the brake resistor has been reached.		
Coast	Coast inverse was selected as a function		
	for a digital input (parameter group 5–1*		
	Digital Inputs). The corresponding terminal		
	is not connected.		
	Coast activated by serial communication		
Ctrl. Ramp-down	Control Ramp-down was selected in		
ctil. Namp down	14-10 Mains Failure.		
	 The mains voltage is below the value set 		
	in 14-11 Mains Voltage at Mains Fault at		
	mains fault		
	• The frequency converter ramps down the		
	motor using a controlled ramp down		
Current High	The frequency converter output current is		
-	above the limit set in 4-51 Warning Current		
	High.		
Current Low	The frequency converter output current is		
	below the limit set in 4-52 Warning Speed Low		
DC Hold	DC hold is selected in 1-80 Function at Stop		
	and a stop command is active. The motor is		
	held by a DC current set in 2-00 DC Hold/		
	Preheat Current.		
DC Stop	The motor is held with a DC current (2-01 DC		
De stop	Brake Current) for a specified time (2-02 DC		
	Braking Time).		
	 DC brake is activated in 2-03 DC Brake Cut 		
	In Speed [RPM] and a stop command is active.		
	DC brake (inverse) is selected as a function		
	for a digital input (parameter group $5-1^*$		
	Digital Inputs). The corresponding terminal		
	is not active.		
	• The DC brake is activated via serial		
	communication.		
Feedback high	The sum of all active feedbacks is above the		
	feedback limit set in 4-57 Warning Feedback		
	High.		
Feedback low	3		
Feedback low	The sum of all active feedbacks is below the		
Feedback low	3		

Status Messages

Freeze output

Freeze output

request

Freeze ref.

Jog request

Jogging

Motor check

OVC control

PowerUnit Off

24 V power supply installed).

the external 24 V.

Mains supply to the frequency converter is removed, but the control card is supplied by

 The remote reference is active, which holds the present speed. Freeze output was selected as a function for a digital input (parameter group 5–1* <i>Digital Inputs</i>). The corresponding terminal is active. Speed control is only possible via the terminal functions Speed Up and Speed Down. Hold ramp is activated via serial communication. 	QSto	ection md	Protect detect overvo • To is r • If p app • Pro 14-
A freeze output command has been given, but the motor remains stopped until a run permissive signal is received.	QSIO	P	Stop R • Qu fur
<i>Freeze Reference</i> was selected as a function for a digital input (parameter group <i>5-1* Digital</i> <i>Inputs</i>). The corresponding terminal is active. The frequency converter saves the actual reference. Changing the reference is now only			gro col • Th ser
possible via terminal functions speed up and speed down. A jog command has been given, but the	Ramı	oing	The m the ac limit v
motor remains stopped until a run permissive signal is received via a digital input.	Ref. I	high	The su referen <i>High</i> .
 The motor is running as programmed in 3-19 Jog Speed [RPM]. Jog was selected as function for a digital input (parameter group 5-1* Digital Inputs). 	Ref. I	ow	The su referen Low.
The corresponding terminal is active.The jog function is activated via the serial communication.	Run	on ref.	The fro referent the se
 The jog function was selected as a reaction for a monitoring function. The monitoring function is active. 	Run	request	A start motor is rece The fr
In 1-80 Function at Stop, Motor Check was selected. A stop command is active. To ensure that a motor is connected to the frequency converter, a permanent test current is applied	Sleep	o Mode	The er motor when Motor
to the motor. Overvoltage control was activated in 2-17 Over- voltage Control, [2] Enabled. The connected		d low	4-53 M Motor
motor supplies the frequency converter with generative energy. The overvoltage control adjusts the V/Hz ratio to run the motor in	Stand	dby	4-52 M In Aut starts digital
controlled mode and to prevent the frequency converter from tripping. (Only frequency converters with an external	Start	delay	In 1-7 set. A motor
			1.1000

Ducto ations used	Dratastian made is active. The write has
Protection md	Protection mode is active. The unit has
	detected a critical status (an overcurrent or
	overvoltage).
	• To avoid tripping, the switching frequency
	is reduced to 4 kHz.
	If possible, protection mode ends after
	approximately 10 s.
	Protection mode can be restricted in
	14-26 Trip Delay at Inverter Fault.
QStop	The motor is decelerating using 3-81 Quick
	Stop Ramp Time.
	• Quick stop inverse was selected as a
	function for a digital input (parameter
	group 5–1* Digital Inputs). The
	corresponding terminal is not active.
	• The quick stop function was activated via
	serial communication.
Ramping	The motor is accelerating/decelerating using
	the active ramp up/down. The reference, a
	limit value, or a standstill is not yet reached.
Ref. high	The sum of all active references is above the
nei. mgn	reference limit set in 4-55 Warning Reference
	High.
Ref. low	The sum of all active references is below the
hel. IOW	reference limit set in 4-54 Warning Reference
	Low.
Run on ref.	The frequency converter is running in the
Ruit off fei.	reference range. The feedback value matches
	the setpoint value.
Bup request	
Run request	A start command has been given, but the
	motor is stopped until a run permissive signal is received via digital input.
Dunning	5 1
Running	The frequency converter drives the motor.
Sleep Mode	The energy saving function is enabled. The
	motor has stopped, but restarts automatically
	when required.
Speed high	Motor speed is above the value set in
	4-53 Warning Speed High.
Speed low	Motor speed is below the value set in
	4-52 Warning Speed Low.
Standby	In Auto On mode, the frequency converter
	starts the motor with a start signal from a
	digital input or serial communication.
Start delay	In 1-71 Start Delay, a delay starting time was
	set. A start command is activated and the
	motor starts after the start delay time expires.
Start fwd/rev	Start forward and start reverse were selected
	as functions for 2 different digital inputs
	(parameter group 5–1* Digital Inputs). The
	motor starts in forward or reverse depending
	on which corresponding terminal is activated.
Stop	The frequency converter has received a stop
	command from the LCP, digital input, or serial
	communication.
1	

Danfoss

Status Messages

Dan	hoss
Jung	

Trip	An alarm occurred and the motor is stopped.
	Once the cause of the alarm is cleared, the
	frequency converter can be reset manually by
	pressing [Reset] or remotely by control
	terminals or serial communication.
Trip lock	An alarm occurred and the motor is stopped.
	Once the cause of the alarm is cleared, power
	must be cycled to the frequency converter.
	The frequency converter can then be reset
	manually by pressing [Reset] or remotely by
	control terminals or serial communication.

Table 8.3 Operation Status

NOTICE

In auto/remote mode, the frequency converter requires external commands to execute functions.

Danfoss

9 Warnings and Alarms

9.1 System Monitoring

The frequency converter monitors the condition of its input power, output, and motor factors as well as other system performance indicators. A warning or alarm may not necessarily indicate a problem internal to the frequency converter itself. In many cases, it indicates failure conditions from input voltage, motor load or temperature, external signals, or other areas monitored by the frequency converter's internal logic. Be sure to investigate those areas exterior to the frequency converter as indicated in the alarm or warning.

9.2 Warning and Alarm Types

9.2.1 Warnings

A warning is issued when an alarm condition is impending or when an abnormal operating condition is present and may result in the frequency converter issuing an alarm. A warning clears by itself when the abnormal condition is removed.

9.2.2 Alarm Trip

An alarm is issued when the frequency converter is tripped, that is, the frequency converter suspends operation to prevent frequency converter or system damage. The motor will coast to a stop. The frequency converter logic will continue to operate and monitor the frequency converter status. After the fault condition is remedied, the frequency converter can be reset. It will then be ready to start operation again.

A trip can be reset in any of 4 ways:

- Press [Reset] on the LCP
- Digital reset input command
- Serial communication reset input command
- Auto reset

9.2.3 Alarm Trip-lock

An alarm that causes the frequency converter to trip-lock requires that input power be cycled. The motor will coast to a stop. The frequency converter logic will continue to operate and monitor the frequency converter status. Remove input power to the frequency converter and correct the cause of the fault, then restore power. This action puts the frequency converter into a trip condition as described above and may be reset in any of those 4 ways.

9.3 Warning and Alarm Displays

Illustration 9.1 Warning Display

An alarm or trip-lock alarm will flash on display along with the alarm number.

Illustration 9.2 Alarm Display

In addition to the text and alarm code on the frequency converter display, there are three status indicator lights.

	Warn. LED	Alarm LED
Warning	ON	OFF
Alarm	OFF	ON (Flashing)
Trip-Lock	ON	ON (Flashing)

3088467.1

Danfoss

9.4 Warning and Alarm Definitions

ACAUTION

Before applying power to the unit, inspect the entire installation as detailed in *Table 4.1*. Check mark those items when completed.

Inspect for	Description	Ø
Auxiliary equipment	• Look for auxiliary equipment, switches, disconnects, or input fuses/circuit breakers that may reside on the input power side of the frequency converter or output side to the motor. Ensure that they are ready for full speed operation.	
	 Check function and installation of any sensors used for feedback to the frequency converter Remove power factor correction caps on motor(s), if present 	
Cable routing	Ensure that input power, motor wiring , and control wiring are separated or in three separate metallic conduit s for high frequency noise isolation	
Control wiring	Check for broken or damaged wires and loose connections	
	Check that control wiring is isolated from power and motor wiring for noise immunity	
	Check the voltage source of the signals, if necessary	
	• The use of shielded cable or twisted pair is recommended. Ensure that the shield is terminated correctly	
Cooling clearance	• Measure that top and bottom clearance is adequate to ensure proper air flow for cooling	
EMC considerations	Check for proper installation regarding electromagnetic compatibility	
Environmental consider- ations	See equipment label for the maximum ambient operating temperature limits	
	Humidity levels must be 5-95% non-condensing	
Fusing and circuit	Check for proper fusing or circuit breakers	
breakers	• Check that all fuses are inserted firmly and in operational condition and that all circuit breakers are in the open position	
Earthing (Grounding)	• The unit requires an earth wire (ground wire) from its chassis to the building earth (ground)	
	• Check for good earth connections (ground connections) that are tight and free of oxidation	
	• Earthing (grounding) to conduit or mounting the back panel to a metal surface is not a suitable earth (ground)	
Input and output power wiring	Check for loose connections	
	Check that motor and mains are in separate conduit or separated screened cables	
Panel interior	Inspect that the unit interior is free of dirt, metal chips, moisture, and corrosion	
Switches	• Ensure that all switch and disconnect settings are in the proper positions	
Vibration	Check that the unit is mounted solidly or that shock mounts are used, as necessary	
	Check for an unusual amount of vibration	

Table 9.2 Start Up Check List

9.5 Fault Messages

The warning/alarm information in this chapter defines each warning/alarm condition, provides the probable cause for the condition, and details a remedy or troubleshooting procedure.

WARNING 1, 10 Volts low

The control card voltage from terminal 50 is <10 V. Remove some of the load from terminal 50, as the 10 V supply is overloaded. Max. 15 mA or minimum 590 Ω .

This condition can be caused by a short in a connected potentiometer or improper wiring of the potentiometer.

Troubleshooting

- Remove the wiring from terminal 50.
- If the warning clears, the problem is with the customer wiring.
- If the warning does not clear, replace the control card.

WARNING/ALARM 2, Live zero error

This warning or alarm only appears if programmed by the user in *6-01 Live Zero Timeout Function*. The signal on one of the analog inputs is less than 50% of the minimum value programmed for that input. This condition is caused by broken wiring or the signal being sent by a faulty device.

Troubleshooting

- Check connections on all the analog input terminals. Control card terminals 53 and 54 for signals, terminal 55 common. MCB 101 terminals 11 and 12 for signals, terminal 10 common. MCB 109 terminals 1, 3, 5 for signals, terminals 2, 4, 6 common).
- Check that the frequency converter programming and switch settings match the analog signal type.
- Perform an input terminal signal test.

WARNING/ALARM 3, No motor

No motor has been connected to the output of the frequency converter.

WARNING/ALARM 4, Mains phase loss

A phase is missing on the supply side, or the mains voltage imbalance is too high. This message also appears for a fault in the input rectifier on the frequency converter. Options are programmed at *14-12 Function at Mains Imbalance*.

Troubleshooting

• Check the supply voltage and supply currents to the frequency converter.

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the low voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time.

Troubleshooting

- Connect a brake resistor.
- Extend the ramp time.
- Change the ramp type.
- Activate the functions in 2-10 Brake Function.
- Increase 14-26 Trip Delay at Inverter Fault.

WARNING/ALARM 8, DC under voltage

If the intermediate circuit voltage (DC link) drops below the under voltage limit, the frequency converter checks if a 24 V DC back-up supply is connected. If no 24 V DC backup supply is connected, the frequency converter trips after a fixed time delay. The time delay varies with unit size.

Troubleshooting

- Check that the supply voltage matches the frequency converter voltage.
- Perform an input voltage test.
- Perform a soft charge circuit test.

WARNING/ALARM 9, Inverter overload

The frequency converter is about to cut out because of an overload (too high current for too long). The counter for electronic thermal inverter protection gives a warning at 98% and trips at 100%, whilst issuing an alarm. The frequency converter *cannot* be reset until the counter is below 90%.

Troubleshooting

- Compare the output current shown on the LCP with the frequency converter rated current.
- Compare the output current shown on the LCP with measured motor current.
- Display the thermal drive load on the LCP and monitor the value. When running above the frequency converter continuous current rating, the counter should increase. When running below the frequency converter continuous current rating, the counter should decrease.

WARNING/ALARM 10, Motor overload temperature

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the frequency converter gives a warning or an alarm when the counter reaches 100% in *1-90 Motor Thermal Protection*. The fault occurs when the motor is overloaded by more than 100% for too long.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded.
- Check that the motor current set in 1-24 Motor *Current* is correct.
- Ensure the motor data in parameters 1-20 through 1-25 is set correctly.
- If an external fan is used, check that it is selected in *1-91 Motor External Fan*.
- Running AMA in *1-29 Automatic Motor Adaptation* (AMA) tunes the frequency converter to the motor more accurately and reduces thermal loading.

WARNING/ALARM 11, Motor thermistor overtemp

The thermistor might be disconnected. Select whether the frequency converter gives a warning or an alarm in *1-90 Motor Thermal Protection*.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded.
- Check that the thermistor is connected correctly between either terminal 53 or 54 (analog voltage input) and terminal 50 (+10 V supply) and that the terminal switch for 53 or 54 is set for voltage. Check *1-93 Thermistor Source* selects terminal 53 or 54.
- When using digital inputs 18 or 19, check that the thermistor is connected correctly between either terminal 18 or 19 (digital input PNP only) and terminal 50.
- If a KTY sensor is used, check for correct connection between terminals 54 and 55.
- If using a thermal switch or thermistor, check that the programming if *1-93 Thermistor Resource* matches sensor wiring.
- If using a KTY sensor, check the programming of 1-95 KTY Sensor Type, 1-96 KTY Thermistor Resource, and 1-97 KTY Threshold level match sensor wiring.

WARNING/ALARM 12, Torque limit

The torque has exceeded the value in *4-16 Torque Limit Motor Mode* or the value in *4-17 Torque Limit Generator Mode. 14-25 Trip Delay at Torque Limit* can change this from a warning only condition to a warning followed by an alarm.

Troubleshooting

- If the motor torque limit is exceeded during ramp-up, extend the ramp-up time.
- If the generator torque limit is exceeded during ramp down, extend the ramp down time.

- If torque limit occurs while running, possibly increase the torque limit. Be sure the system can operate safely at a higher torque.
- Check the application for excessive current draw on the motor.

WARNING/ALARM 13, Over current

The inverter peak current limit (approximately 200% of the rated current) is exceeded. The warning lasts about 1.5 s, then the frequency converter trips and issues an alarm. This fault may be caused by shock loading or fast acceleration with high inertia loads. If extended mechanical brake control is selected, the trip can be reset externally.

Troubleshooting

- Remove power and check if the motor shaft can be turned.
- Check that the motor size matches the frequency converter.
- Check parameters 1-20 to 1-25 for correct motor data.

ALARM 14, Earth (ground) fault

There is current from the output phases to ground, either in the cable between the frequency converter and the motor or in the motor itself.

Troubleshooting

- Remove power to the frequency converter and repair the earth fault.
- Check for earth faults in the motor by measuring the resistance to ground of the motor leads and the motor with a megohmmeter.
- Perform current sensor test.

ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact your local Danfoss supplier:

- 15-40 FC Type
- 15-41 Power Section
- 15-42 Voltage
- 15-43 Software Version
- 15-45 Actual Typecode String
- 15-49 SW ID Control Card
- 15-50 SW ID Power Card
- 15-60 Option Mounted
- 15-61 Option SW Version (for each option slot)

ALARM 16, Short circuit

There is short-circuiting in the motor or motor wiring.

• Remove power to the frequency converter and repair the short circuit.

WARNING/ALARM 17, Control word timeout

There is no communication to the frequency converter. The warning is only active when *8-04 Control Timeout Function* is NOT set to *Off*.

If 8-04 Control Timeout Function is set to Stop and Trip, a warning appears and the frequency converter ramps down until it trips, then displays an alarm.

Troubleshooting

- Check the connections on the serial communication cable.
- Increase 8-03 Control Timeout Time.
- Check the operation of the communication equipment.
- Verify a proper installation based on EMC requirements.

WARNING/ALARM 22, Hoist mechanical brake

When this warning is active, the LCP shows the type of issue.

0 = The torque ref. was not reached before timeout. 1 = There was no brake feedback before timeout.

WARNING 23, Internal fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in *14-53 Fan Monitor* ([0] Disabled).

Troubleshooting

- Check the fan resistance.
- Check the soft charge fuses.

WARNING 24, External fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in *14-53 Fan Monitor* ([0] Disabled).

Troubleshooting

- Check the fan resistance.
- Check the soft charge fuses.

WARNING 25, Brake resistor short circuit

The brake resistor is monitored during operation. If a short circuit occurs, the brake function is disabled and the warning appears. The frequency converter is still operational but without the brake function. Remove power to the frequency converter and replace the brake resistor (see *2-15 Brake Check*).

WARNING/ALARM 26, Brake resistor power limit

The power transmitted to the brake resistor is calculated as a mean value over the last 120 s of run time. The calculation is based on the intermediate circuit voltage and the brake resistance value set in 2-16 AC brake Max. *Current.* The warning is active when the dissipated braking is higher than 90% of the brake resistance power. If [2] Trip is selected in 2-13 Brake Power Monitoring, the frequency converter trips when the dissipated braking power reaches 100%.

WARNING/ALARM 27, Brake chopper fault

The brake transistor is monitored during operation. If a short circuit occurs, the brake function is disabled and a warning is issued. The frequency converter is still operational but, since the brake transistor has shortcircuited, substantial power is transmitted to the brake resistor, even if it is inactive.

Remove power to the frequency converter and remove the brake resistor.

This alarm/warning could also occur if the brake resistor overheats. Terminals 104 and 106 are available as brake resistor's Klixon inputs, see *Brake Resistor Temperature Switch* in the *Design Guide*.

WARNING/ALARM 28, Brake check failed

The brake resistor is not connected or not working. Check *2-15 Brake Check*.

ALARM 29, Heat Sink temp

The maximum temperature of the heatsink has been exceeded. The temperature fault does not reset until the temperature drops below a defined heatsink temperature. The trip and reset points vary based on the frequency converter power size.

Troubleshooting

Check for the following conditions:

- Ambient temperature too high.
- Motor cable too long.
- Incorrect airflow clearance above and below the frequency converter.
- Blocked airflow around the frequency converter.
- Damaged heatsink fan.
- Dirty heatsink.

This alarm is based on the temperature measured by the heatsink sensor mounted inside the IGBT modules.

Troubleshooting

- Check the fan resistance.
- Check the soft charge fuses.
- Check the IGBT thermal sensor.

ALARM 30, Motor phase U missing

Motor phase U between the frequency converter and the motor is missing.

Troubleshooting

Remove power from the frequency converter and check motor phase U.

ALARM 31, Motor phase V missing

Motor phase V between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase V.

ALARM 32, Motor phase W missing

Motor phase W between the frequency converter and the motor is missing.

MG21A302

Remove power from the frequency converter and check motor phase W.

ALARM 33, Inrush fault

Too many power-ups have occurred within a short time period. Let the unit cool to operating temperature.

WARNING/ALARM 34, Fieldbus communication fault

The fieldbus on the communication option card is not working.

WARNING/ALARM 36, Mains failure

This warning/alarm is only active if the supply voltage to the frequency converter is lost and 14-10 Mains Failure is NOT set to [0] No Function.

Troubleshooting

• Check the fuses to the frequency converter and mains power supply to the unit.

ALARM 38, Internal fault

When an internal fault occurs, a code number defined in the *Table 9.3* is displayed.

Troubleshooting

9

- Cycle power.
- Check that the option is properly installed.
- Check for loose or missing wiring.

Contact the Danfoss supplier or Danfoss service if required. Note the code number for further troubleshooting directions.

No.	Text
0	Serial port cannot be initialised. Contact the
	Danfoss supplier or Danfoss Service.
256-258	Power EEPROM data is defective or too old.
512	Control board EEPROM data is defective or too
	old.
513	Communication time out reading EEPROM data.
514	Communication time out reading EEPROM data.
515	Application oriented control cannot recognize the
	EEPROM data.
516	Cannot write to the EEPROM because a write
	command is on progress.
517	Write command is under time out.
518	Failure in the EEPROM.
519	Missing or invalid barcode data in EEPROM.
783	Parameter value outside of min/max limits.
1024-1279	A centelegram that has to be sent couldn't be
	sent.
1281	Digital signal processor flash timeout.
1282	Power micro software version mismatch.
1283	Power EEPROM data version mismatch.
1284	Cannot read digital signal processor software
	version.
1299	Option SW in slot A is too old.
1300	Option SW in slot B is too old.
1301	Option SW in slot C0 is too old.

No.	Text
1302	Option SW in slot C1 is too old.
1315	Option SW in slot A is not supported (not
	allowed).
1316	Option SW in slot B is not supported (not
	allowed).
1317	Option SW in slot C0 is not supported (not
	allowed).
1318	Option SW in slot C1 is not supported (not
	allowed).
1379	Option A did not respond when calculating
	platform version.
1380	Option B did not respond when calculating
	platform version.
1381	Option C0 did not respond when calculating
	platform version.
1382	Option C1 did not respond when calculating
	platform version.
1536	An exception in the application oriented control is
4700	registered. Debug information written in LCP.
1792	DSP watchdog is active. Debugging of power part
	data, motor oriented control data not transferred
2040	correctly.
2049	Power data restarted.
2064-2072	H081x: option in slot x has restarted.
2080-2088	H082x: option in slot x has issued a power-up wait.
2096-2104	H983x: option in slot x has issued a legal power-
2090-2104	up wait.
2304	Could not read any data from power EEPROM.
2305	Missing SW version from power unit.
2314	Missing power unit data from power unit.
2315	Missing SW version from power unit.
2316	Missing lo_statepage from power unit.
2324	Power card configuration is determined to be
	incorrect at power-up.
2325	········
	A power card has stopped communicating while
	A power card has stopped communicating while main power is applied.
2326	main power is applied.
2326	
2326	main power is applied. Power card configuration is determined to be
2326	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to
	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register.
	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been
2327	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present.
2327	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards
2327 2330	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match.
2327 2330 2561	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match. No communication from DSP to ATACD. No communication from ATACD to DSP (state running).
2327 2330 2561	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match. No communication from DSP to ATACD. No communication from ATACD to DSP (state
2327 2330 2561 2562	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match. No communication from DSP to ATACD. No communication from ATACD to DSP (state running).
2327 2330 2561 2562 2816	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match. No communication from DSP to ATACD. No communication from ATACD to DSP (state running). Stack overflow control board module.
2327 2330 2561 2562 2816 2817	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match. No communication from DSP to ATACD. No communication from ATACD to DSP (state running). Stack overflow control board module. Scheduler slow tasks.
2327 2330 2561 2562 2816 2817 2818	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match. No communication from DSP to ATACD. No communication from ATACD to DSP (state running). Stack overflow control board module. Scheduler slow tasks. Fast tasks.
2327 2330 2561 2562 2816 2817 2818 2819	main power is applied. Power card configuration is determined to be incorrect after the delay for power cards to register. Too many power card locations have been registered as present. Power size information between the power cards does not match. No communication from DSP to ATACD. No communication from ATACD to DSP (state running). Stack overflow control board module. Scheduler slow tasks. Fast tasks. Parameter thread.

Operating Instructions

No.	Text
2836	cfListMempool too small.
3072-5122	Parameter value is outside its limits.
5123	Option in slot A: Hardware incompatible with
	control board hardware.
5124	Option in slot B: Hardware incompatible with
	Control board hardware.
5125	Option in slot C0: Hardware incompatible with
	control board hardware.
5126	Option in slot C1: Hardware incompatible with
	control board hardware.
5376-6231	Out of memory.

Table 9.3 Code Numbers for Internal Faults

ALARM 39, Heat sink sensor

No feedback from the heat sink temperature sensor.

The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.

WARNING 40, Overload of digital output terminal 27

Check the load connected to terminal 27 or remove the short-circuit connection. Check *5-00 Digital I/O Mode* and *5-01 Terminal 27 Mode*.

WARNING 41, Overload of digital output terminal 29

Check the load connected to terminal 29 or remove the short-circuit connection. Check *5-00 Digital I/O Mode* and *5-02 Terminal 29 Mode*.

WARNING 42, Overload of digital output on X30/6 or overload of digital output on X30/7

For X30/6, check the load connected to X30/6 or remove the short-circuit connection. Check *5-32 Term X30/6 Digi Out (MCB 101)*.

For X30/7, check the load connected to X30/7 or remove the short-circuit connection. Check *5-33 Term X30/7 Digi Out (MCB 101)*.

ALARM 46, Power card supply

The supply on the power card is out of range.

There are 3 power supplies generated by the switch mode power supply (SMPS) on the power card: 24 V, 5 V, \pm 18 V. When powered with 24 V DC with the MCB 107 option, only the 24 V and 5 V supplies are monitored. When powered with 3-phase mains voltage, all 3 supplies are monitored.

WARNING 47, 24 V supply low

The 24 V DC supply is measured on the control card. The external 24 V DC back-up power supply may be overloaded, otherwise contact the Danfoss supplier.

WARNING 48, 1.8 V supply low

The 1.8 V DC supply used on the control card is outside of the allowable limits. The power supply is measured on the control card. Check for a defective control card. If an option card is present, check for an overvoltage condition.

WARNING 49, Speed limit

When the speed is not within the specified range in 4-11 Motor Speed Low Limit [RPM] and 4-13 Motor Speed High Limit [RPM], the frequency converter displays a warning. When the speed is below the specified limit in 1-86 Trip Speed Low [RPM] (except when starting or stopping) the frequency converter trips.

ALARM 50, AMA calibration failed

Contact the Danfoss supplier or Danfoss Service.

ALARM 51, AMA check $U_{nom}\ and\ I_{nom}$

The settings for motor voltage, motor current, and motor power are wrong. Check the settings in parameters *1-20* to *1-25*.

ALARM 52, AMA low I_{nom}

The motor current is too low. Check the settings.

ALARM 53, AMA motor too big The motor is too big for the AMA to operate.

ALARM 54, AMA motor too small

The motor is too small for the AMA to operate.

ALARM 55, AMA parameter out of range

The parameter values of the motor are outside of the acceptable range. AMA does not run.

ALARM 56, AMA interrupted by user

The user has interrupted the AMA.

ALARM 57, AMA internal fault

Try to restart AMA again a number of times, until the AMA is carried out. Note that repeated runs may heat the motor to a level where the resistance R_s and R_r are increased. In most cases, however, this is not critical.

ALARM 58, AMA Internal fault

Contact the Danfoss supplier.

WARNING 59, Current limit

The current is higher than the value in 4-18 Current Limit. Ensure that motor data in parameters 1-20 to 1-25 are set correctly. Possibly increase the current limit. Be sure that the system can operate safely at a higher limit.

WARNING 60, External interlock

External interlock has been activated. To resume normal operation, apply 24 V DC to the terminal programmed for external interlock and reset the frequency converter (via serial communication, digital I/O, or by pressing [Reset]).

WARNING/ALARM 61, Feedback error

An error between calculated motor speed and speed measurement from feedback device. The function Warning/ Alarm/Disable is set in 4-30 Motor Feedback Loss Function. Accepted error setting in 4-31 Motor Feedback Speed Error and the allowed time the error occur setting in 4-32 Motor Feedback Loss Timeout. During a commissioning procedure the function may be effective.

WARNING 62, Output frequency at maximum limit The output frequency is higher than the value set in

4-19 Max Output Frequency.

Danfoss

WARNING 64, Voltage Limit

The load and speed combination demands a motor voltage higher than the actual DC-link voltage.

WARNING/ALARM 65, Control card over temperature The control card has reached its trip temperature of 75 °C.

WARNING 66, Heat sink temperature low

The frequency converter is too cold to operate. This warning is based on the temperature sensor in the IGBT module.

Increase the ambient temperature of the unit. Also, a trickle amount of current can be supplied to the frequency converter whenever the motor is stopped by setting 2-00 DC Hold/Preheat Current at 5% and 1-80 Function at Stop.

Troubleshooting

- Check the temperature sensor.
- Check the sensor wire between the IGBT and the gate drive card.

ALARM 67, Option module configuration has changed

One or more options have either been added or removed since the last power-down. Check that the configuration change is intentional and reset the unit.

ALARM 68, Safe Stop activated

Safe Torque Off has been activated.

Troubleshooting

• To resume normal operation, apply 24 V DC to terminal 37, then send a reset signal (via bus, digital I/O, or by pressing [Reset]).

ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold.

Troubleshooting

- Check the operation of the door fans.
- Check that the filters for the door fans are not blocked.
- Check that the gland plate is properly installed on IP21/IP54 (NEMA 1/12) frequency converters.

ALARM 70, Illegal FC configuration

The control card and power card are incompatible.

Troubleshooting

• Contact the supplier with the type code of the unit from the nameplate and the part numbers of the cards to check compatibility.

ALARM 71, PTC 1 safe stop

Safe Stop has been activated from the MCB 112 PTC Thermistor Card (motor too warm). Normal operation can be resumed when the MCB 112 applies 24 V DC to T37 again (when the motor temperature reaches an acceptable level) and when the Digital Input from the MCB 112 is deactivated. When that happens, a reset signal must be is be sent (via Bus, Digital I/O, or by pressing [Reset]).

NOTICE

If automatic restart is enabled, the motor may start when the fault is cleared.

ALARM 72, Dangerous failure

Safe stop with trip lock. Unexpected signal levels on safe stop and digital input from the MCB 112 PTC thermistor card.

WARNING 73, Safe Stop auto restart

Safe stopped. With automatic restart enabled, the motor may start when the fault is cleared.

WARNING 76, Power unit setup

The required number of power units does not match the detected number of active power units. When replacing an F-frame module, this occurs if the power specific data in the module power card does not match the rest of the frequency converter.

Troubleshooting

• Confirm the spare part and its power card are the correct part number.

WARNING 77, Reduced power mode

This warning indicates that the frequency converter is operating in reduced power mode (i.e. less than the allowed number of inverter sections). This warning is generated on power cycle when the frequency converter is set to run with fewer inverters and remains on.

ALARM 79, Illegal power section configuration

The scaling card is the incorrect part number or not installed. Also, the MK102 connector on the power card could not be installed.

ALARM 80, Drive initialised to default value

Parameter settings are initialised to default settings after a manual reset.

Troubleshooting

Reset the unit to clear the alarm.

ALARM 81, CSIV corrupt

CSIV (Customer Specific Initialisation Values) file has syntax errors.

ALARM 82, CSIV parameter error

CSIV (Customer Specific Initialisation Values) failed to initialise a parameter.

ALARM 85, Dang fail PB

PROFIBUS/PROFIsafe error.

WARNING/ALARM 104, Mixing fan fault

The fan monitor checks that the fan is spinning at frequency converter power-up or whenever the mixing fan is turned on. If the fan is not operating, the fault is issued. The mixing-fan fault can be configured as a warning or an alarm trip by *14-53 Fan Monitor*.

Troubleshooting

• Cycle power to the frequency converter to determine if the warning/alarm returns.
Danfoss

WARNING 250, New spare part

A component in the frequency converter has been replaced. Reset the frequency converter to resume normal operation.

WARNING 251, New typecode

The power card or other components have been replaced and the typecode changed.

Troubleshooting

• Reset to remove the warning and resume normal operation.

Danfoss

10 Basic Troubleshooting

10.1 Start Up and Operation

Symptom	Possible cause	Test	Solution
	Missing input power	See Table 4.1	Check the input power source
	Missing or open fuses or circuit breaker tripped	See <i>Open fuses</i> and <i>Tripped circuit</i> <i>breaker</i> in this table for possible causes	Follow the recommendations provided
	No power to the LCP	Check the LCP cable for proper connection or damage	Replace the faulty LCP or connection cable
Display dark/No function	Shortcut on control voltage (terminal 12 or 50) or at control terminals	Check the 24 V control voltage supply for terminals 12/13 to 20-39 or 10 V supply for terminals 50 to 55	Wire the terminals properly
	Wrong LCP (LCP from VLT [®] 2800 or 5000/6000/8000/ FCD or FCM)		Use only LCP 101 (P/N 130B1124) or LCP 102 (P/N 130B1107)
	Wrong contrast setting		Press [Status] + [▲]/[▼] to adjust the contrast
	Display (LCP) is defective	Test using a different LCP	Replace the faulty LCP or connection cable
	Internal voltage supply fault or SMPS is defective		Contact supplier
Intermittent display	Overloaded power supply (SMPS) due to improper control wiring or a fault within the frequency converter	To rule out a problem in the control wiring, disconnect all control wiring by removing the terminal blocks.	If the display stays lit, then the problem is in the control wiring. Check the wiring for shorts or incorrect connections. If the display continues to cut out, follow the procedure for display dark.
	Service switch open or missing motor connection	Check if the motor is connected and the connection is not interrupted (by a service switch or other device).	Connect the motor and check the service switch
	No mains power with 24 V DC option card	If the display is functioning but no output, check that mains power is applied to the frequency converter.	Apply mains power to run the unit
	LCP Stop	Check if [Off] has been pressed	Press [Auto On] or [Hand On] (depending on operation mode) to run the motor
Motor not running	Missing start signal (Standby)	Check 5-10 Terminal 18 Digital Input for correct setting for terminal 18 (use default setting)	Apply a valid start signal to start the motor
	Motor coast signal active (Coasting)	Check <i>5-12 Coast inv.</i> for correct setting for terminal 27 (use default setting).	Apply 24 V on terminal 27 or program this terminal to <i>no</i> operation
	Wrong reference signal source	Check reference signal: Local, remote or bus reference? Preset reference active? Terminal connection correct? Scaling of terminals correct? Reference signal available?	Program correct settings. Check 3-13 Reference Site. Set preset reference active in parameter group 3-1* References. Check for correct wiring. Check scaling of terminals. Check reference signal.

Symptom	Possible cause	Test	Solution
	Motor rotation limit	Check that 4-10 Motor Speed	Program correct settings
		Direction is programmed correctly.	
Motor running in wrong	Active reversing signal	Check if a reversing command is	Deactivate reversing signal
direction		programmed for the terminal in	
		parameter group 5-1* Digital inputs.	
	Wrong motor phase connection		See chapter 3.4.5 Motor Rotation
			Check in this manual
	Frequency limits set wrong	Check output limits in 4-13 Motor	Program correct limits
		Speed High Limit [RPM], 4-14 Motor	
		Speed High Limit [Hz] and 4-19 Max	
Motor is not reaching		Output Frequency.	
maximum speed	Reference input signal not scaled	Check reference input signal	Program correct settings
	correctly	scaling in 6-0* Analog I/O Mode and	
		parameter group 3-1* References.	
		Reference limits in parameter	
		group 3-0* Reference Limit.	
	Possible incorrect parameter	Check the settings of all motor	Check settings in parameter group
Motor speed unstable	settings	parameters, including all motor	1-6* Load Depen. Setting. For closed
		compensation settings. For closed	loop operation, check settings in
		loop operation, check PID settings.	parameter group 20-0* Feedback.
	Possible overmagnetisation	Check for incorrect motor settings	Check motor settings in parameter
Motor runs rough		in all motor parameters	groups 1-2* Motor Data, 1-3* Adv
			Motor Data, and 1-5* Load Indep.
		Charle husba wanta wa Charle	Setting.
Mater will not bush	Possible incorrect settings in the	Check brake parameters. Check	Check parameter group 2-0* DC Brake and 3-0* Reference Limits.
Motor will not brake	brake parameters. Possible too short ramp down times	ramp time settings	Brake and 3-0" Reference Limits.
	Phase-to-phase short	Motor or panel has a short phase	Eliminate any shorts detected
	rhase-to-phase short	to phase. Check motor and panel	Eliminate any shorts detected
		phase for shorts	
	Motor overload	Motor is overloaded for the	Perform startup test and verify
		application	motor current is within specifi-
Open power fuses or circuit			cations. If motor current is
breaker trip			exceeding nameplate full load
			current, motor may run only with
			reduced load. Review the specifi-
			cations for the application.
	Loose connections	Perform pre-startup check for loose	Tighten loose connections
		connections	
	Problem with mains power (See	Rotate input power leads into the	If imbalanced leg follows the wire,
	Alarm 4 Mains phase loss	frequency converter one position: A	it is a power problem. Check mains
Mains current imbalance	description)	to B, B to C, C to A.	power supply.
greater than 3%	Problem with the frequency	Rotate input power leads into the	If imbalance leg stays on same
	converter	frequency converter one position: A	input terminal, it is a problem with
		to B, B to C, C to A.	the unit. Contact the supplier.
	Problem with motor or motor	Rotate output motor leads one	If imbalanced leg follows the wire,
	wiring	position: U to V, V to W, W to U.	the problem is in the motor or
Motor current imbalance			motor wiring. Check motor and
greater than 3%			motor wiring.
greater than 570	Problem with the frequency	Rotate output motor leads one	If imbalance leg stays on same
	converters	position: U to V, V to W, W to U.	output terminal, it is a problem
			with the unit. Contact the supplier.

Danfoss

Danfoss

Basic Troubleshooting

Operating Instructions

Symptom	Possible cause	Test	Solution
Acoustic noise or vibration (e.g. a fan blade is making noise or vibrations at certain frequencies)	Resonances, e.g. in the motor/fan system	Bypass critical frequencies by using parameters in parameter group 4-6* Speed Bypass Turn off over-modulation in 14-03 Overmodulation Change switching pattern and frequency in parameter group 14-0* Inverter Switching Increase Resonance Dampening in 1-64 Resonance Damping	Check if noise and/or vibration have been reduced to an acceptable limit

Table 10.1 Troubleshooting

11.1 Power-dependent Specifications

	N1	10	N1	32	N1	60	N2	00	N2	50	N3	15
High/normal load*	но	NO	но	NO	но	NO	но	NO	HO	NO	но	NO
Typical shaft output at 400 V [kW]	90	110	110	132	132	160	160	200	200	250	250	315
Typical shaft output at 460 V [hp]	125	150	150	200	200	250	250	300	300	350	350	450
Enclosure IP20			D	3h				•	D4	lh		
Enclosure IP21/IP 54			D	lh					D2	2h		
Output current												
Continuous (at 3x380-440 V) [A]	177	212	212	260	260	315	315	395	395	480	480	588
Intermittent (at 3x380-440 V) [A]	266	233	318	286	390	347	473	435	593	528	720	647
Continuous (at 3x441-480 V) [A]	160	190	190	240	240	302	302	361	361	443	443	535
Intermittent (at 3x441-480 V) [A]	240	209	285	264	360	332	453	397	542	487	665	588
Continuous kVA (at 400 V AC) [kVA]	123	147	147	180	180	218	218	274	274	333	333	407
Continuous kVA (at 460 V AC) [kVA]	127	151	151	191	191	241	241	288	288	353	353	426
Max. input current	-							•				
Continuous (3x380-440 V) [A]	171	204	204	251	251	304	304	381	381	463	463	567
Continuous (3x441-480 V) [A]	154	183	183	231	231	291	291	348	348	427	427	516
Max. pre-fuses ¹⁾ [A]	315 350 400					550 630 800			00			
Max. cable size					1				1			
Motor (mm ² /AWG ^{2) 5)})												
Mains (mm ² /AWG ^{2) 5)})	1											
Loadshare (mm ² /AWG ^{2) 5)})	2x95 (2x3/0) 2x185 (2x350 mcm)											
Brake (mm²/AWG ^{2) 5)})												
Estimated power loss at 400 V AC at												
rated max load [W] ³⁾	2031	2559	2289	2954	2923	3770	3093	4116	4039	5137	5005	6674
Estimated power loss at 460 V AC at	1828	2261	2051	2724	2089	3628	2872	3569	3575	4566	4458	5714
rated max load [W] ³⁾	1020	2201	2031	2724	2089	5020	2072	3309	3373	4300	4430	5714
Weight, enclosure IP00/IP20, kg [lbs.]												
Weight, enclosure IP21, kg [lbs.]			62 [135]					125 [275]		
Weight, enclosure IP54, kg [lbs.]	1											
Efficiency ⁴⁾						0.	98					
Output frequency [Hz]						0-5	590					
Heatsink overtemp. trip [°C]						1	10					
Power card ambient trip [°C]		75										
*High overload=150% current for 60 s,	Normal	overload	=110% c	urrent fo	or 60 s							

Table 11.1 Technical Specifications, D1h-D4h, Mains Supply 3x380-480 V AC

1) For type of fuse, refer to chapter 11.3 Fuse Tables.

2) American Wire Gauge.

3) The typical power loss is at normal conditions and expected to be within \pm 15% (tolerance relates to variety in voltage and cable conditions.) These values are based on a typical motor efficiency (IE2/IE3 border line). Lower efficiency motors add to the power loss in the frequency converter and the opposite is also true. If the switching frequency is raised from nominal, the power losses rise significantly. LCP and typical control card power consumptions are included. Further options and customer load can add up to 30 W to the losses (though typically only 4 W extra for a fully loaded control card or options for slot A or slot B, each).

4) Measured using 5 m screened motor cables at rated load and rated frequency.

5) Wiring terminals on N132, N160, and N315 frequency converters cannot receive cables one size larger.

	N75K		NS	юк	N1	10K	N	132	N160	
High/normal load*	но	NO	но	NO	но	NO	но	NO	но	NO
Typical shaft output at 550 V [kW]	45	55	55	75	75	90	90	110	110	132
Typical shaft output at 575 V [hp]	60	75	75	100	100	125	125	150	150	200
Typical shaft ouptut at 690 V [kW]	55	75	75	90	90	110	110	132	132	160
Enclosure IP20					D	3h			•	
Enclosure IP21/IP54					D	1h				
Output current		_		_		_	_	_		
Continuous (at 550 V) [A]	76	90	90	113	113	137	137	162	162	201
Intermittent (60 s overload) (at 550 V) [A]	122	99	135	124	170	151	206	178	243	221
Continuous (at 575/690 V) [A]	73	86	86	108	108	131	131	155	155	192
Intermittent (60 s overload) (at 575/690 V) [kVA]	117	95	129	119	162	144	197	171	233	211
Continuous kVA (at 550 V) [kVA]	72	86	86	108	108	131	131	154	154	191
Continuous kVA (at 575 V) [kVA]	73	86	86	108	108	130	130	154	154	191
Continuous kVA (at 690 V) [kVA]	87	103	103	129	129	157	157	185	185	229
Max. input current										
Continuous (at 550 V) [A]	77	89	89	110	110	130	130	158	158	198
Continuous (at 575 V) [A]	74	85	85	106	106	124	124	151	151	189
Continuous (at 690 V) [A]	77	87	87	109	109	128	128	155	155	197
Max. cable size										
Mains, motor, brake, and load share (mm ² /AWG ²⁾)					2x95	(2x3/0)				
Max. external mains fuses [A]	1	60				3	15			
Estimated power loss at 575 V [W] ³⁾	1098	1162	1162	1428	1430	1740	1742	2101	2080	2649
Estimated power loss at 690 V [W] ³⁾	1057	1204	1205	1477	1480	1798	1800	2167	2159	2740
Weight, enclosure IP20, kg [lbs.]				•	125	[275]				•
Weight, enclosures IP21/ IP54, kg [lbs.]					62	[135]				
Efficiency ⁴⁾					0	.98				
Output frequency [Hz]					0-	590				
Heatsink overtemp. trip [°C]					1	10				
Power card ambient trip [°C]						75				
*High overload=150% current for 60 s, N	ormal ove	erload=110	% current	for 60 s.						

Table 11.2 Technical Specifications, D1h/D3h, Mains Supply 3x525-690 V AC

Danfoss

	N200		N250		N315		P400	
High/normal load*	НО	NO	но	NO	но	NO	НО	NO
Typical shaft output at 550 V [kW]	132	160	160	200	200	250	250	315
Typical shaft output at 575 V [hp]	200	250	250	300	300	350	350	400
Typical shaft output at 690 V [kW]	160	200	200	250	250	315	315	400
Enclosure IP20		•	•	D.	4h	•	•	•
Enclosure IP21/IP54				D	2h			
Output current								
Continuous (at 550 V) [A]	201	253	253	303	303	360	360	418
Intermittent (60 s overload) (at 550 V)[A]	302	278	380	333	455	396	540	460
Continuous (at 575/690 V) [A]	192	242	242	290	290	344	344	400
Intermittent (60 s overload) (at 575/690 V) [kVA]	288	266	363	319	435	378	516	440
Continuous kVA (at 550 V) [kVA]	191	241	241	289	289	343	343	398
Continuous kVA (at 575 V) [kVA]	191	241	241	289	289	343	343	398
Continuous kVA (at 690 V) [kVA]	229	289	289	347	347	411	411	478
Max. input current								
Continuous (at 550 V) [A]	198	245	245	299	299	355	355	408
Continuous (at 575 V) [A]	189	234	234	286	286	339	339	390
Continuous (at 690 V) [A]	197	240	240	296	296	352	352	400
Max. cable size								
Mains, motor, brake, and load share $(mm^2 / AWG^{2)})$				2x185 (2x	350 mcm)			
Max. external mains fuses [A]				5	50			
Estimated power loss at 575 V [W] ³⁾	2361	3074	3012	3723	3642	4465	4146	5028
Estimated power loss at 690 V [W] ³⁾	2446	3175	3123	3851	3771	4614	4258	5155
Weight, enclosure, IP20/IP21/IP54, kg [lbs.]		•	•	125	[275]	•		•
Efficiency ⁴⁾				0.	98			
Output frequency [Hz]			0-	590			0-	525
Heatsink overtemp. trip [°C]				1	10			
Power card ambient trip [°C]				8	0			
*High overload=150% current for 60 s, Normal	overload=1	10% curren	t for 60 s.					

Danfoss

Table 11.3 Technical Specifications, D2h/D4h, Mains Supply 3x525-690 V AC

1) For type of fuse, refer to chapter 11.3 Fuse Tables.

2) American Wire Gauge.

3) The typical power loss is at normal conditions and expected to be within \pm 15% (tolerance relates to variety in voltage and cable conditions.) These values are based on a typical motor efficiency (IE2/IE3 border line). Lower efficiency motors add to the power loss in the frequency converter and the opposite is also true. If the switching frequency is raised from nominal, the power losses rise significantly. LCP and typical control card power consumptions are included. Further options and customer load can add up to 30 W to the losses (though typically only 4 W extra for a fully loaded control card or options for slot A or slot B, each).

4) Measured using 5 m screened motor cables at rated load and rated frequency.

Frame size	Description	Maximum weight [kg] ([lbs.])
D5h	D1h ratings+disconnect and/or brake chopper	166 (255)
D6h	D1h ratings+contactor and/or circuit breaker	129 (285)
D7h	D2h ratings+disconnect and/or brake chopper	200 (440)
D8h	D2h ratings+contactor and/or circuit breaker	225 (496)

Table 11.4 D5h-D8h Weights

11.2 General Technical Data

Mains supply (L1, L2, L3)	
Supply voltage	380–480 V ±10%, 525–690 V ±10%
Mains voltage low/mains voltage drop-out: During low mains voltage or a mains drop-out, the frequency conv	5 I
below the minimum stop level, which corresponds typically to 15% Power-up and full torque cannot be expected at mains voltage low supply voltage.	
Supply frequency	50/60 Hz ±5%
Max. imbalance temporary between mains phases	3.0% of rated supply voltage
True power factor (λ)	≥0.9 nominal at rated load
Displacement power factor ($\cos \Phi$) near unity	(>0.98)
Switching on input supply L1, L2, L3 (power ups)	maximum one time/2 min
Environment according to EN60664-1	
The unit is suitable for use on a circuit capable of delivering not me	
Motor output (U, V, W)	
Output voltage	0-100% of supply voltage
Output frequency	0-590 Hz ¹⁾
Switching on output	Unlimited
Ramp times	0.01-3000 8
1) From software version 1.10 the output frequency of the frequence for further information.	
Torque characteristics	

Starting torque (Constant torque)	maximum 110% for 60 s ¹⁾
Starting torque	maximum 135% up to 0.5 s ¹⁾
Overload torque (Constant torque)	maximum 110% for 60 s ¹⁾

1) Percentage relates to the frequency converter's nominal torque

Max. motor cable length, screened/armoured	150 m
Max. motor cable length, unscreened/unarmoured	300 m
Max. cross section to motor, mains, load sharing and brake ¹⁾	
Maximum cross section to control terminals, rigid wire	1.5 mm ² /16 AWG (2x0.75 mm ²)
Maximum cross section to control terminals, flexible cable	1 mm²/18 AWG
Maximum cross section to control terminals, cable with enclosed core	0.5 mm²/20 AWG
Minimum cross section to control terminals	0.25 mm ²

1) Depending on voltage and power.

Programmable digital inputs	4 (6)
Terminal number	18, 19, 27 ¹⁾ , 29 ¹⁾ , 32, 33
Logic	PNP or NPN
Voltage level	0-24 V DC
Voltage level, logic '0' PNP	<5 V DC
Voltage level, logic '1' PNP	>10 V DC
Voltage level, logic '0' NPN	>19 V DC
Voltage level, logic '1' NPN	<14V DC
Maximum voltage on input	28 V DC
Input resistance, R _i	aprrox. 4 kΩ

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. 1) Terminals 27 and 29 can also be programmed as output. Danfoss

Danfoss

Analog i	nputs
----------	-------

Number of analog inputs	2	
Terminal number	53, 54	
Modes	Voltage or current	
Mode select	Switches A53 and A54	
Voltage mode	Switch A53/A54=(U)	
Voltage level	0 V to 10 V (scaleable)	
Input resistance, R _i	approx. 10 kΩ	
Max. voltage	±20 V	
Current mode	Switch A53/A54=(I)	
Current level	0/4 to 20 mA (scaleable)	
Input resistance, R _i	approx. 200	
Max. current	30 mA	
Resolution for analog inputs	10 bit (+sign)	
Accuracy of analog inputs	Max. error 0.5% of full scale	
Bandwidth	100 Hz	

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Illustration 11.1 PELV Isolation

Programmable pulse inputs	2
Terminal number pulse	29, 33
Max. frequency at terminal, 29, 33	110 kHz (Push-pull driven
Max. frequency at terminal, 29, 33	5 kHz (open collector
Min. frequency at terminal 29, 33	4 Hz
Voltage level	see chapter 11.2.1 Digital Input
Maximum voltage on input	28 V DC
Input resistance, R _i	approx. 4 kΩ
Pulse input accuracy (0.1-1 kHz)	Max. error: 0.1% of full scale

Number of programmable analog outputs	1	
Terminal number	42	
Current range at analog output	0/4-20 mA	
Max. resistor load to common at analog output	500 Ω	
Accuracy on analog output	Max. error: 0.8% of full sca	
Resolution on analog output	8 bit	

The analog output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Control card, RS-485 serial communication

Terminal number	68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61	Common for terminals 68 and 69

The RS-485 serial communication circuit is functionally seated from other central circuits and galvanically isolated from the supply voltage (PELV).

Danfoss

Operating Instructions

Digital output	
Programmable digital/pulse outputs	2
Terminal number	27, 29 ¹⁾
Voltage level at digital/frequency output	0-24 V
Max. output current (sink or source)	40 mA
Max. load at frequency output	1 kΩ
Max. capacitive load at frequency output	10 nF
Minimum output frequency at frequency output	0 Hz
Maximum output frequency at frequency output	32 kHz
Accuracy of frequency output	Max. error: 0.1% of full scale
Resolution of frequency outputs	12 bit

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Control	card, 24	V DC	output	

Terminal number	12, 13
Max. load	200 mA

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Relay outputs

Programmable relay outputs	2
Relay 01 Terminal number	1-3 (break), 1-2 (make)
Max. terminal load (AC-1) ¹⁾ on 1-2 (NO) (Resistive load) ^{2),3)}	400 V AC, 2 A
Max. terminal load (AC-15) ¹⁾ on 1-2 (NO) (Inductive load @ $\cos \varphi$ 0.4)	240 V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 1-2 (NO) (Resistive load)	80 V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 1-2 (NO) (Inductive load)	24 V DC, 0.1 A
Max. terminal load (AC-1) ¹⁾ on 1-3 (NC) (Resistive load)	240 V AC, 2 A
Max. terminal load (AC-15) ¹⁾ on 1-3 (NC) (Inductive load @ cos ϕ 0.4)	240 V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 1-3 (NC) (Resistive load)	50 V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 1-3 (NC) (Inductive load)	24 V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO)	24 V DC 10 mA, 24V AC 2 mA
Environment according to EN 60664-1	overvoltage category III/pollution degree 2
Relay 02 Terminal number	4-6 (break), 4-5 (make)
Max. terminal load (AC-1) ¹⁾ on 4-5 (NO) (Resistive load) ²⁾³⁾	400 V AC, 2 A
Max. terminal load (AC-15) ¹⁾ on 4-5 (NO) (Inductive load @ $\cos \phi$ 0.4)	240 V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 4-5 (NO) (Resistive load)	80 V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 4-5 (NO) (Inductive load)	24 V DC, 0.1 A
Max. terminal load (AC-1) ¹⁾ on 4-6 (NC) (Resistive load)	240 V AC, 2 A
Max. terminal load (AC-15) ¹⁾ on 4-6 (NC) (Inductive load @ cos ϕ 0.4)	240 V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 4-6 (NC) (Resistive load)	50 V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 4-6 (NC) (Inductive load)	24 V DC, 0.1 A
Min. terminal load on 4-6 (NC), 4-5 (NO)	24 V DC 10 mA, 24V AC 2 mA
Environment according to EN 60664-1	overvoltage category III/pollution degree 2

1) IEC 60947 t 4 and 5

The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV). 2) Overvoltage Category II

3) UL applications 300 V AC 2 A

Control card, 10 V DC output

Terminal number	50
Output voltage	10.5 V ±0.5 V
Max. load	25 mA

The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Danfoss

Operating Instructions

Resolution of output frequency at 0-590 H	łz	± 0.003 H
System response time (terminals 18, 19, 2	7, 29, 32, 33)	≤2 m:
Speed control range (open loop)	1:	1:100 of synchronous spee
Speed accuracy (open loop)	30-4000 RPM: /	Maximum error of ±8 RPM
All control characteristics are based on a 4	-pole asynchronous motor.	
Surroundings		
Enclosure type D1h/D2h/D5h/D6h/D7h/D8	3h	IP21/Type 1, IP54/Type12
Enclosure type D3h/D4h		IP20/Chassi
Vibration test all enclosure types		1.0 <u>c</u>
Relative humidity	5%-95% (IEC 721-3-3; Class 3K3 (non-con	
Aggressive environment (IEC 60068-2-43)		class Ko
Test method according to IEC 60068-2-43		
Ambient temperature (at 60 AVM switchin	ng mode)	
- with derating		max. 55°C ¹
- with full output power of typical EFF2 m	notors (up to 90% output current)	max. 50 °C ¹
- at full continuous FC output current		max. 45 °C ¹
1) For more information on derating see th	e Design Guide, section on Special Conditions.	
Minimum ambient temperature during ful	I-scale operation	0 °C
Minimum ambient temperature at reduce	d performance	-10 °C
Temperature during storage/transport		-25 to +65/70 °C
Maximum altitude above sea level withou	t derating	1000 n
Maximum altitude above sea level with de	erating	3000 n
1) For more information on derating see th	e Design Guide, section on Special Conditions.	
EMC standards, Emission	EN 61800-3, EN 61000-6-3	3/4, EN 55011, IEC 61800-3
	EN	I 61800-3, EN 61000-6-1/2
EMC standards, Immunity	EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, El	N 61000-4-5, EN 61000-4-6
See the Design Guide, section on Special Co	onditions.	
Control card performance		
Scan interval		5 m
Control card, USB Serial Communication		
USB standard		1.1 (Full speed
USB plug		USB type B "device" plug

ACAUTION

Connection to PC is carried out via a standard host/device USB cable.

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is <u>not</u> galvanically isolated from protection earth (ground). Use only isolated laptop/PC as connection to the USB connector on frequency converter or an isolated USB cable/converter.

Protection and Features

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heat sink ensures that the frequency converter trips if the temperature reaches 95 °C ±5 °C. An overload temperature cannot be reset until the temperature of the heat sink is below 70 °C ±5 °C (Guideline these temperatures may vary for different power sizes, enclosures etc.). The frequency converter has an auto derating function to avoid its heat sink reaching 95 °C.
- The frequency converter is protected against short-circuits on motor terminals U, V, W.
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.
- The frequency converter is protected against ground faults on motor terminals U, V, W.

11.3 Fuse Tables

11.3.1 Protection

Branch circuit protection

To protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be short-circuited and over-current protected according to national/international regulations.

Short-circuit protection

The frequency converter must be protected against shortcircuit to avoid electrical or fire hazard. Danfoss recommends using the fuses mentioned below to protect service personnel and equipment in case of an internal failure in the frequency converter. The frequency converter provides full short-circuit protection in case of a shortcircuit on the motor output.

Overcurrent protection

Provide overload protection to avoid fire hazard due to overheating of the cables in the installation. The frequency converter is equipped with an internal overcurrent protection that can be used for upstream overload protection (UL-applications excluded). See *4-18 Current Limit*. Moreover, fuses or circuit breakers can be used to provide the overcurrent protection in the installation. Overcurrent protection must always be carried out according to national regulations.

Danfoss

11.3.2 Fuse Selection

Danfoss recommends using the following fuses which will ensure compliance with EN50178. In case of malfunction, not following the recommendation may result in unnecessary damage to the frequency converter.

The fuses below are suitable for use on a circuit capable of delivering 100,000 Arms (symmetrical).

N110-N315	380–500 V	type aR
N75K-N400	525–690 V	type aR

Table 11.5 Recommended Fuses

Power	Fuse options							
Size	Bussman PN	Littelfuse PN	Littelfuse PN	Bussmann PN	Siba PN	Ferraz-Shawmut PN	Ferraz-Shawmut PN (Europe)	Ferraz-Shawmut PN (North America)
N110	170M2619	LA50QS300-4	L50S-300	FWH-300A	20 610 31.315	A50QS300-4	6,9URD31D08A0315	A070URD31KI0315
N132	170M2620	LA50QS350-4	L50S-350	FWH-350A	20 610 31.350	A50QS350-4	6,9URD31D08A0350	A070URD31KI0350
N160	170M2621	LA50QS400-4	L50S-400	FWH-400A	20 610 31.400	A50QS400-4	6,9URD31D08A0400	A070URD31KI0400
N200	170M4015	LA50QS500-4	L50S-500	FWH-500A	20 610 31.550	A50QS500-4	6,9URD31D08A0550	A070URD31KI0550
N250	170M4016	LA50QS600-4	L50S-600	FWH-600A	20 610 31.630	A50QS600-4	6,9URD31D08A0630	A070URD31KI0630
N315	170M4017	LA50QS800-4	L50S-800	FWH-800A	20 610 31.800	A50QS800-4	6,9URD32D08A0800	A070URD31KI0800

Table 11.6 Fuse Options for 380-480 V Frequency Converters

Specifications	Sr	be	cif	ica	ti	ons
----------------	----	----	-----	-----	----	-----

OEM		Fuse options			
VLT Model	Bussmann PN	Siba PN	Ferraz-Shawmut European PN	Ferraz-Shawmut North American PN	
N75k T7	170M2616	20 610 31.160	6,9URD30D08A0160	A070URD30KI0160	
N90k T7	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31KI0315	
N110 T7	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31KI0315	
N132 T7	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31KI0315	
N160 T7	170M2619	20 610 31.315	6,9URD31D08A0315	A070URD31KI0315	
N200 T7	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550	
N250 T7	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550	
N315 T7	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550	
N400 T7	170M4015	20 620 31.550	6,9URD32D08A0550	A070URD32KI0550	

Table 11.7 Fuse Options for 525-690 V Frequency Converters

For UL compliance, for units supplied without a contactoronly option, the Bussmann 170M series fuses must be used. See *Table 11.9* for SCCR ratings and UL fuse criteria if a contactor-only option is supplied with the frequency converter.

11.3.3 Short Circuit Current Rating (SCCR)

If the frequency converter is not supplied with a mains disconnect, contactor or circuit breaker, the Short Circuit Current Rating (SCCR) of the frequency converters is 100,000 amps at all voltages (380–690 V).

If the frequency converter is supplied with a mains disconnect, the SCCR of the frequency converter is 100,000 amps at all voltages (380–690 V).

If the frequency converter is supplied with a circuit breaker, the SCCR depends on the voltage, see *Table 11.8*:

	415 V	480 V	600 V	690 V
D6h frame	100,000 A	100,000 A	65,000 A	70,000 A
D8h frame	100,000 A	100,000 A	42,000 A	30,000 A

Table 11.8 Frequency Converter Supplied with a Circuit Breaker

If the frequency converter is supplied with a contactor-only option and is externally fused according to *Table 11.9*, the SCCR of the frequency converter is as follows:

Danfoss

	415 V	480 V	600 V	690 V
	IEC ¹⁾	UL ²⁾	UL ²⁾	IEC ¹⁾
D6h frame	100,000 A	100,000 A	100,000 A	100,000 A
D8h frame (not	100,000 A	100,000 A	100,000 A	100,000 A
including the				
N315T4)				
D8h frame	100,000 A	Consult	Not applic	able
(N315T4 only)		factory		

Table 11.9 Frequency Converter Supplied with a Contactor

With a Bussmann type LPJ-SP or Gould Shawmut type AJT fuse.
450 A max fuse size for D6h and 900 A max fuse size for D8h.
Must use Class J or L branch fuses for UL approval. 450 A max fuse size for D6h and 600 A max fuse size for D8h.

Danfoss

11.3.4 Connection Tightening Torques

When tightening all electrical connections it is very important to tighten with the correct torque. Too low or too high torque results in a bad electrical connection. Use a torque wrench to ensure correct torque. Always use a torque wrench to tighten the bolts.

Frame Size	Terminal	Torque	Bolt
			size
D1h/D3h/D5h/D6h	Mains Motor Load sharing Regen	19-40 Nm (168-354 in-lbs)	M10
	Earth (Ground) Brake	8.5-20.5 Nm (75-181 in-lbs)	M8
D2h/D4h/D7h/D8h	Mains Motor Regen Load sharing Earth (ground)	19-40 Nm (168-354 in-lbs)	M10
	Brake	8.5-20.5 Nm (75-181 in-lbs)	M8

Table 11.10 Torque for Terminals

Index

А

AC input
AC mains 6, 7, 8
AC mains connection 30
AC waveform
Accel time
Airflow 10
Alarm definitions 64
Alarm log 41
AMA 60, 66, 69
AMA with T27 connected 53
AMA without T27 connected 53
Analog input 32, 79
Analog inputs 65
Analog output 32, 79
Analog signal 65
Analog speed reference 54
Application examples 53
Auto mode 41
Auto on 42
Auto On 60, 61
Auto-reset 40

В

Basic operational programming	37
Block diagram	7
Braking 60,	67

С

Cable length and cross-section	
Circuit breaker	36, 64
Closed loop	33
Communication option	68
Conduit	13, 36, 64
Connection, control wiring	30
Control cable	31
Control cable, screened	31
Control card	65
Control card performance	81
Control card, 10 V DC output	80
Control card, 24 V DC output	80
Control card, RS-485 serial communication	79
Control card, USB serial communication	81
Control characteristic	81

Control signal 44, 60
Control system 6
Control terminal 33, 42, 46, 60, 62
Control terminal function
Control terminal type 32
Control terminals 37
Control wiring 11, 13, 14, 36, 64
Control wiring connection 30
Cooling clearance
Current limit 38
Current rating

D

DC current	
DC link	
Derating	
Digital input	. 32, 46, 61, 66, 78
Digital output	
Discharge time	
Disconnect switch	
Downloading data from the LCP	43
Duct cooling	

Е

Earth connection 64
Earth wire 64
Earthing
Electrical installation 11
Electrical noise 14
EMC 32, 36, 64, 81
Equalizing cable 31
External alarm reset 55
External command 7, 62
External controller 6
External interlock 47
External voltage 44

F

Fault log 41	I
Fault messages 65	5
Feedback)
Floating delta 30)
Frame size 7	7
Frequency converter block diagram	7
Full load current 9)
Functional testing 6, 38	3

Fuse	36, 72
Fuses	64, 68
Fusing	13, 36, 64

G

Ground connection	14, 36, 64
Ground loop	32
Ground wire	14, 36, 64
Grounded delta	30
Grounding	14, 36, 64
Grounding hazard	14
Grounding, IP20 enclosure	15
Grounding, IP21/54 enclosure	15
Grounding, screened control cable	31

Н

Hand	38, 60
Hand on	
Hand On	60
Harmonic	7
High overload	75, 76, 77

I

IEC 61800-3 81
Induced voltage 13
Initialisation 43
Input current 30
Input power
Input signal 33, 44
Input terminal 33
Input terminals 65
Input voltage 37, 63
Installation 6, 13, 36, 37, 64
Installation site9
Installation, electrical 11
Isolated mains

L

Latched start/stop inverse 5	54
Leakage current (>3.5 mA) 1	14
Local control 40, 42, 6	50
Local control panel	40
Local mode	38
Local operation	40
Local start	38
Local-control test	38

Μ

101
Main menu 41, 44
Mains
Mains supply (L1, L2, L3) 78
Mains voltage 41, 42, 60
Maximum cable size 75, 76, 77
Maximum input current 75, 76, 77
Mechanical brake control 57
Mechanical installation9
Menu key 40, 41
Menu structure 42, 47
Motor cable 13, 16, 30
Motor connection 16
Motor current 7, 41, 69
Motor data 37, 38, 66, 69
Motor frequency 41
Motor output (U, V, W) 78
Motor power 13, 41, 69
Motor protection 13,82
Motor rotation 41
Motor rotation check 30
Motor speeds 37
Motor status 6
Motor thermistor 56
Motor wiring 11, 13, 36, 64
Mounting 36, 64
Multiple frequency converters 13, 16

Ν

Navigation key	40, 42, 60
Navigation keys	37, 44
Noise isolation	11, 36, 64
Normal overload	75, 76, 77

0

Open loop	33, 44, 81
Operation key	
Optional equipment	6, 37
Output current	60, 65, 75, 76, 77, 80
Output signal	47
Overcurrent	61
Overload protection	
Overvoltage	

Ρ

Parameter menu structure 48
Parameter setting 42
Parameter settings 46
PELV
Phase loss 65
Potentiometer 55
Potentiometer reference 59
Power 14
Power connection 14
Power factor 7, 16, 36, 64
Power loss 76
Power rating 7
Pre-installation check list
Preset speeds 55
Product overview 4
Programming 6, 37, 38, 40, 41, 42, 47, 52, 65
Protection
Protection and features
Pulse input 79
Pulse start/stop 54, 58

Q

Quick menu	41, 44
Quick set-up	37

R

Ramp-down time
Ramp-up time 38
Reference 41, 44, 53, 60, 61
Relay output 32, 80
Remote command 6
Remote programming 52
Remote reference 61
Reset 40, 42, 43, 62, 63, 65, 70, 82
Restore
Restoring default setting 43
Restoring Default Settings 43
Reversing 55
RFI filter 30
RMS current
RS-485
Run command 39
Run permissive

S

5
Safe Torque Off 33, 54
Screened control cable
Screened control cable, using
Serial communication 6, 31, 32, 33, 42, 60, 61, 63
Setpoint
Set-up 41
Shielded cable 11, 36, 64
Shielded wire 13
Short circuit 66
Sleep mode 61
Smart Application Set-up (SAS) 37
Specification 6
Speed reference
Start/stop 58
Start/stop command 54
Start-up 6, 43, 44, 72
Status display 60
Status messages
Status mode 60
STO 33
Stop command 61
Supply voltage 30, 32, 68, 79
Surroundings 81
Switching frequency 61
System feedback 6

Т

Temperature limit
Terminal 53 33, 44
Terminal 54 33
Terminal location, D1h 16
Terminal location, D2h 18
Terminal programming 33
Terminal programming example46
Thermal protection
Thermistor
Thermistor control wiring 30
Torque characteristic78
Torque limit 38
Torque, terminals 84
Transient protection 7
Trip function 13
Troubleshooting

Danfoss

U

Unintended start	. 43
Uploading data to the LCP	43

V

Voltage imbalance	65
Voltage reference via potentiometer	59

W

Warning definitions	64
Weight	76
Wire type, rating	14
Wiring, control terminal	33

Danfoss

www.danfoss.com/drives

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten www.danfoss.com/drives

130R0289

